Laboratory Projects in Computational Organic Chemistry

This chapter outlines the computational projects proposed to the students of the NATO Advanced Study Institute as a complement to the topics covered by the lecturers. A general description of methods and strategies is given, followed by the complete index of problems. Some selected examples of chemical relevance are exposed in greater detail.

[1]  M. Hernandez,et al.  A semi‐empirical MO theory for ionization potentials and electron affinities , 1977 .

[2]  M. R. Peterson,et al.  A standard geometrical model for compounds of the main group elements H through I , 1985 .

[3]  R. Fausto,et al.  A molecular mechanics force field for conformational analysis of simple acyl chlorides, carboxylic acids and esters , 1986 .

[4]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[5]  Michael A. Robb,et al.  MC SCF gradient optimization of the H2CO→H2 + CO transition structure , 1982 .

[6]  W. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds. 3. STO‐3G basis sets for first‐ and second‐row transition metals , 1983 .

[7]  W. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds 4. Extended basis sets for third‐and fourth‐row, main‐group elements , 1986 .

[8]  Michael Baer,et al.  Theory of chemical reaction dynamics , 1985 .

[9]  W. Hehre,et al.  An evaluation of the performance of diffuse function‐augmented basis sets for second row elements, Na‐Cl , 1987 .

[10]  Donald G. Truhlar,et al.  POLYRATE: A general computer program for variational transition state theory and semiclassical tunneling calculations of chemical reaction rates , 1987 .

[11]  R. L. Hunt,et al.  Thermodynamic Properties and the Cohesive Energy of Calcium Ammoniate , 1970 .

[12]  Fernando Bernardi,et al.  MCSCF gradient calculation of transition structures in organic reactions , 1984 .

[13]  J. Chandrasekhar,et al.  Efficient and accurate calculation of anion proton affinities , 1981 .

[14]  J. B. Pedley,et al.  Thermochemical data of organic compounds , 1986 .

[15]  J. B. Collins,et al.  Self‐consistent molecular orbital methods. XVII. Geometries and binding energies of second‐row molecules. A comparison of three basis sets , 1976 .

[16]  Norman L. Allinger,et al.  Conformational analysis. LX. Improved calculations of the structures and energies of hydrocarbons by the Westheimer method , 1968 .

[17]  Michael A. Robb,et al.  Application of unitary group methods to configuration interaction calculations , 1979 .

[18]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[19]  J. Pople,et al.  Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements , 1982 .

[20]  J. D. Cox,et al.  Thermochemistry of organic and organometallic compounds , 1970 .

[21]  J. Stephen Binkley,et al.  Self‐consistent molecular orbital methods. XIX. Split‐valence Gaussian‐type basis sets for beryllium , 1977 .

[22]  Yoshiki Ogawa,et al.  Tables of molecular vibrational frequencies , 1972 .

[23]  Gustavo A. Arteca,et al.  Shape characterization of some molecular model surfaces , 1988 .

[24]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[25]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[26]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[27]  Paul G. Mezey,et al.  The shape of molecular charge distributions: Group theory without symmetry , 1987 .

[28]  Martin J. Field,et al.  MC−SCF study of the Diels-Alder reaction between ethylene and butadiene , 1988 .

[29]  Paul G. Mezey,et al.  Shape group studies of molecular similarity: Shape groups and shape graphs of molecular contour surfaces , 1988 .

[30]  K. Morokuma,et al.  The origin of barriers to internal rotation. An energy decomposition study for CH3CH3, CH3NH2 and CH3OH , 1977 .

[31]  D. M. Dennison,et al.  The Methyl Alcohol Molecule and Its Microwave Spectrum , 1953 .

[32]  Fernando Bernardi,et al.  An MC-SCF study of the thermal cycloaddition of two ethylenes , 1985 .

[33]  R. Lees,et al.  Torsion–Vibration–Rotation Interactions in Methanol. I. Millimeter Wave Spectrum , 1968 .

[34]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[35]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[36]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[37]  Mark S. Gordon,et al.  Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements , 1980 .

[38]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. XIII. An Extended Gaussian‐Type Basis for Boron , 1972 .

[39]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[40]  John E. Adams,et al.  Reaction path Hamiltonian for polyatomic molecules , 1980 .

[41]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions , 1963 .

[42]  W. Hehre,et al.  Self‐Consistent Molecular Orbital Methods. XIV. An Extended Gaussian‐Type Basis for Molecular Orbital Studies of Organic Molecules. Inclusion of Second Row Elements , 1972 .

[43]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules , 1970 .

[44]  P. J. Gardner,et al.  The standard enthalpies of formation of some aliphatic diols , 1972 .

[45]  N. L. Allinger,et al.  An Improved Molecular Mechanics Force Field for Alcohols and Ethers , 1980 .

[46]  Lothar Schäfer,et al.  Ab initio studies of structural features not easily amenable to experiment: Part 31. Conformational analysis and molecular structures of ethylene glycol , 1984 .

[47]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .