Acridine Orange, a precipitant for sulfated glycosaminoglycans, causes mucopolysaccharidosis in cultured fibroblasts

[1]  R. Lüllmann-Rauch,et al.  Cultured corneal fibroblasts as a model system for the demonstration of drug-induced mucopolysaccharidosis , 2005, Archives of Toxicology.

[2]  R. Lüllmann-Rauch Experimental mucopolysaccharidosis: Preservation and ultrastructural visualization of intralysosomal glycosaminoglycans by use of the cationic dyes cuprolinic blue and toluidine blue , 2004, Histochemistry.

[3]  R. Lüllmann-Rauch Histochemical evidence for lysosomal storage of acid glycosaminoglycans in splenic cells of rats treated with tilorone , 2004, Histochemistry.

[4]  N. Mitchell,et al.  Acridine orange stabilization of glycosaminoglycans in beginning endochondral ossification , 2004, Histochemistry.

[5]  A. Brun,et al.  Histochemical evidence for lysosomal uptake of lead in tissue cultured fibroblasts , 2004, Histochemie.

[6]  V. Turnover of Heparan Sulfate Proteoglycan in Human Colon Carcinoma Cells , 2001 .

[7]  R. Lüllmann-Rauch,et al.  Mucopolysaccharidosis and lipidosis in rats treated with tilorone analogues. , 1989, Toxicology.

[8]  D. Cutler,et al.  The potential role of lysosomes in tissue distribution of weak bases , 1988, Biopharmaceutics & drug disposition.

[9]  B. O. Fanger Adaptation of the Bradford protein assay to membrane-bound proteins by solubilizing in glucopyranoside detergents. , 1987, Analytical biochemistry.

[10]  K. von Figura,et al.  Tilorone acts as a lysosomotropic agent in fibroblasts. , 1984, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[11]  J. Scott,et al.  Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. , 1981, The Biochemical journal.

[12]  R. Lüllmann-Rauch,et al.  Lipidosis induced by amphiphilic cationic drugs. , 1978, Biochemical pharmacology.

[13]  R. Hurst,et al.  Thermodynamics of mucopolysaccharide–dye binding. II. Binding constant and cooperativity parameters of acridine orange–dermatan sulfate system , 1977, Biopolymers.

[14]  E. W. Abrahamson,et al.  Spectroscopic properties of complexes of acridine orange with glycosaminoglycans. II. Aggregated complexes—evidence for long‐range order , 1976, Biopolymers.

[15]  M. Salter,et al.  Spectroscopic properties of complexes of acridine orange with glycosaminoglycans. I. Soluble complexes , 1976, Biopolymers.

[16]  K. von Figura,et al.  Metabolism of sulfated glycosaminoglycans in cultivated bovine arterial cells. I. Characterization of different pools of sulfated glycosaminoglycans. , 1975, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[17]  E. Neufeld,et al.  CORRECTIVE FACTORS FOR INBORN ERRORS OF MUCOPOLYSACCHARIDE METABOLISM , 1971, Annals of the New York Academy of Sciences.

[18]  C. W. Hall,et al.  The defect in Hurler's and Hunter's syndromes: faulty degradation of mucopolysaccharide. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. F. Bradley,et al.  Aggregation of cationic dyes on acid polysaccharides. I. Spectrophotometric titration with acridine orange and other metachromatic dyes. , 1967, Biochimica et biophysica acta.

[20]  N. Gonatas,et al.  DYNAMICS OF ACRIDINE ORANGE-CELL INTERACTION. II. DYE-INDUCED ULTRASTRUCTURAL CHANGES IN MULTIVESICULAR BODIES (ACRIDINE ORANGE PARTICLES). , 1964 .

[21]  E. Robbins,et al.  DYNAMICS OF ACRIDINE ORANGE-CELL INTERACTION. I. INTERRELATIONSHIPS OF ACRIDINE ORANGE PARTICLES AND CYTOPLASMIC REDDENING. , 1963 .