Experiencing Venus: Clues to the origin, evolution, and chemistry of terrestrial planets via in-situ exploration of our sister world

We review the current state of knowledge of (1) the origin and evolution of Venus and (2) the photochemical and thermochemical processes occurring in the middle and lower atmosphere there. For each, we review the promise of on-going and planned orbital observations by ESA's Venus Express and Japan's Venus Climate Orbiter missions. We review the need for future in-situ measurements for understanding Venus origin and evolution and present-day chemistry, and the implications for understanding the origin and history of the Earth and other bodies in the inner solar system, as well as for understanding terrestrial planets in other solar systems. We prioritize the goals remaining in the post Venus Express era, based on the Decadal Survey (National Research Council, 2003). Using past experience with Pioneer Venus, VEGAs, Veneras, and, most recently, Venus Express as guides, we suggest appropriate techniques and measurements to address these fundamental science issues.

[1]  A. Seiff THERMAL STRUCTURE OF THE ATMOSPHERE OF VENUS , 2022, Venus.

[2]  T. Imamura,et al.  Elucidating the rate of volcanism on venus: Detection of lava eruptions using near-infrared observations , 2001 .

[3]  G. Schaber,et al.  Impact Craters on Venus: What are they Telling Us? , 1991 .

[4]  D. Turcotte,et al.  Tectonic implications of radiogenic noble gases in planetary atmospheres , 1988 .

[5]  V. M. Linkin,et al.  Water vapor and sulfur dioxide abundances at the Venus cloud tops from the Venera-15 infrared spectrometry data , 1990 .

[6]  W. M. Kaula,et al.  Quantitative tests for plate tectonics on Venus , 1981 .

[7]  R. Pepin Evolution of Earth's Noble Gases: Consequences of Assuming Hydrodynamic Loss Driven by Giant Impact , 1997 .

[8]  Ronald G. Prinn,et al.  The Atmospheres of Venus, Earth, and Mars: A Critical Comparison , 1987 .

[9]  P. Ford,et al.  Features on Venus generated by plate boundary processes , 1992 .

[10]  Tobias Owen,et al.  The composition and early history of the atmosphere of Mars , 1992 .

[11]  D. Hunten,et al.  Divergent evolution among Earth-like planets: The case for Venus exploration, The future of Solar System exploration, 2003-2013 , 2002 .

[12]  Francesca Ferri,et al.  Titan's methane cycle , 2006 .

[13]  A. Ingersoll,et al.  Atmospheric tides and the rotation of Venus. I - Tidal theory and the balance of torques , 1980 .

[14]  A. Ingersoll,et al.  Venus' rotation and atmospheric tides , 1978 .

[15]  David Crisp,et al.  THE ABUNDANCE OF SULFUR DIOXIDE BELOW THE CLOUDS OF VENUS , 1993 .

[16]  David Harry Grinspoon,et al.  Implications of the high D/H ratio for the sources of water in Venus' atmosphere , 1993, Nature.

[17]  Frank A. Podosek,et al.  Noble Gas Geochemistry: Noble Gases in the Earth , 1984 .

[18]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[19]  L. Esposito,et al.  Sulfur Dioxide: Episodic Injection Shows Evidence for Active Venus Volcanism , 1984, Science.

[20]  W. M. Kaula,et al.  The tectonics of Venus , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[21]  Fredric W. Taylor,et al.  Venus before Venus Express , 2006 .

[22]  G. Schubert,et al.  Evidence for Retrograde Lithospheric Subduction on Venus , 1992, Science.

[23]  Robert O. Pepin,et al.  On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles , 1991 .

[24]  C. Russell,et al.  The Venus Atmosphere and Ionosphere and Their Interaction with the Solar Wind: an Overview , 1997 .

[25]  Kevin H. Baines,et al.  VARIATIONS IN VENUS CLOUD-PARTICLE PROPERTIES: A NEW VIEW OF VENUS'S CLOUD MORPHOLOGY AS OBSERVED BY THE GALILEO NEAR INFRARED MAPPING SPECTROMETER , 1993 .

[26]  Joe Zender,et al.  Venus Express science planning , 2006 .

[27]  Fredric W. Taylor,et al.  The global distribution of water vapor in the middle atmosphere of Venus , 1982 .

[28]  P. Drossart,et al.  To the depths of Venus: Exploring the deep atmosphere and surface of our sister world with Venus Express , 2006 .

[29]  R. Showstack Exploring Venus as a Terrestrial Planet , 2008 .

[30]  Angioletta Coradini,et al.  Detection of Sub-Micron Radiation from the Surface of Venus by Cassini/VIMS , 2000 .

[31]  T. Gold,et al.  Theory of the Earth-synchronous rotation of Venus , 1979, Nature.

[32]  T. Donahue New Analysis of Hydrogen and Deuterium Escape from Venus , 1999 .

[33]  D. Senske,et al.  Regional topographic rises on Venus: Geology of Western Eistla Regio and comparison to Beta Regio and Atla Regio , 1992 .

[34]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[35]  Boris A. Ivanov,et al.  Cratering on Venus: Models and Observations , 1997 .

[36]  D. Hunten,et al.  Mass fractionation in hydrodynamic escape , 1987 .

[37]  J. Kasting,et al.  Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. , 1990, Icarus.

[38]  Ronald G. Prinn,et al.  COMPOSITION OF THE VENUS ATMOSPHERE , 2022, Venus.

[39]  V. Krasnopolsky,et al.  A sensitive search for nitric oxide in the lower atmospheres of venus and Mars : Detection on Venus and upper limit for Mars , 2006 .

[40]  F. Nimmo Why does Venus lack a magnetic field , 2002 .

[41]  L. Ksanfomaliti Lightning in the cloud layer of Venus , 1980 .

[42]  Kevin H. Baines,et al.  Latitudinal distribution of carbon monoxide in the deep atmosphere of Venus , 1993 .

[43]  D. Hunten,et al.  Optical Detection of Lightning on Venus , 1995 .

[44]  F. Nimmo,et al.  Influence of early plate tectonics on the thermal evolution and magnetic field of Mars , 2000 .

[45]  Charles F. Yoder,et al.  Venusian Spin Dynamics , 1997 .

[46]  S. Sasaki Off-disk penetration of ancient solar wind , 1991 .

[47]  Alexander S. Konopliv,et al.  Venusian k2 tidal Love number from Magellan and PVO tracking data , 1996 .

[48]  T V Johnson,et al.  Galileo Infrared Imaging Spectroscopy Measurements at Venus , 1991, Science.

[49]  D. Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , 1996 .

[50]  Venus lightning. , 1991, Science.

[51]  Nedjeljko Frančula The National Academies Press , 2013 .

[52]  Galileo/NIMS near-infrared thermal imagery of the surface of Venus , 1993 .

[53]  F. Taylor Carbon monoxide in the deep atmosphere of Venus , 1995 .

[54]  Seiji Sugita,et al.  On observing the compositional variability of the surface of Venus using nightside near‐infrared thermal radiation , 2003 .

[55]  Max Coleman,et al.  Measurement of sulfur isotope compositions by tunable laser spectroscopy of SO2. , 2007, Analytical chemistry.

[56]  G. Wetherill Solar wind origin of Ar-36 on Venus , 1981 .

[57]  G. Schubert,et al.  GENERAL CIRCULATION AND THE DYNAMICAL STATE OF THE VENUS ATMOSPHERE , 2022, Venus.

[58]  Y. Abe,et al.  Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans , 2005, Nature.

[59]  G. Schubert,et al.  Flexural ridges, trenches, and outer rises around coronae on Venus , 1992 .

[60]  Paul R. Mahaffy,et al.  Methane and related trace species on Mars: Origin, loss, implications for life, and habitability , 2007 .

[61]  T. Owen,et al.  Gas trapping in water ice at very low deposition rates and implications for comets , 2003 .

[62]  Rui Q. Yang,et al.  Aircraft and balloon in situ measurements of methane and hydrochloric acid using interband cascade lasers. , 2007, Applied optics.

[63]  Duane O. Muhleman,et al.  Long-term (1979–1990) changes in the thermal, dynamical, and compositional structure of the Venus Mesosphere as inferred from microwave spectral line observations of 12CO, 13CO, and C18O , 1991 .

[64]  L. H. Brace,et al.  Evidence for lightning on Venus , 1979, Nature.

[65]  D. J. Stevenson,et al.  Planetary magnetism , 2013 .

[66]  S. Sasaki,et al.  Origin of isotopic fractionation of terrestrial Xe: hydrodynamic fractionation during escape of the primordial H2He atmosphere , 1988 .

[67]  Robert G. Strom,et al.  The Resurfacing History of Venus , 1997 .

[68]  Pierre Drossart,et al.  Detection of the surface of Venus at 1.0 μm from ground-based observations , 1993 .

[69]  Donald L. Turcotte,et al.  An episodic hypothesis for Venusian tectonics , 1993 .

[70]  Andrew P. Ingersoll,et al.  Atmospheric Tides and the Rotation of Venus , 1980 .

[71]  W. W. L. Taylor,et al.  THE ELECTRICAL ACTIVITY OF THE ATMOSPHERE OF VENUS , 2022, Venus.

[72]  J. Kasting,et al.  Mass fractionation during transonic escape and implications for loss of water from Mars and Venus , 1986 .

[73]  M. McElroy,et al.  Noble gases in the terrestrial planets , 1981, Nature.

[74]  R. Canup,et al.  Simulations of a late lunar-forming impact , 2004 .

[75]  J. Kasting,et al.  Xenon fractionation in porous planetesimals. , 1990, Geochimica et cosmochimica acta.

[76]  V. A. Krasnopolskii Lightning on Venus according to information obtained by the satellites Venera 9 and 10 , 1980 .

[77]  C. Russell,et al.  Upper limit on the intrinsic magnetic field of Venus , 1987 .

[78]  R. Phillips,et al.  Anatomy of a Venusian hot spot - Geology, gravity, and mantle dynamics of Eistla Regio , 1992 .

[79]  J. Crawford,et al.  Cloud structure on the dark side of Venus , 1984, Nature.