Number of hidden states needed to physically implement a given conditional distribution

We consider the problem of how to construct a physical process over a finite state space $X$ that applies some desired conditional distribution $P$ to initial states to produce final states. This problem arises often in the thermodynamics of computation and nonequilibrium statistical physics more generally (e.g., when designing processes to implement some desired computation, feedback controller, or Maxwell demon). It was previously known that some conditional distributions cannot be implemented using any master equation that involves just the states in $X$. However, here we show that any conditional distribution $P$ can in fact be implemented---if additional "hidden" states not in $X$ are available. Moreover, we show that it is always possible to implement $P$ in a thermodynamically reversible manner. We then investigate a novel cost of the physical resources needed to implement a given distribution $P$: the minimal number of hidden states needed to do so. We calculate this cost exactly for the special case where $P$ represents a single-valued function, and provide an upper bound for the general case, in terms of the nonnegative rank of $P$. These results show that having access to one extra binary degree of freedom, thus doubling the total number of states, is sufficient to implement any $P$ with a master equation in a thermodynamically reversible way, if there are no constraints on the allowed form of the master equation. (Such constraints can greatly increase the minimal needed number of hidden states.) Our results also imply that for certain $P$ that can be implemented without hidden states, having hidden states permits an implementation that generates less heat.

[1]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[2]  Peter Salamon,et al.  Thermodynamic length and dissipated availability , 1983 .

[3]  A. Kolmogoroff Zur Theorie der Markoffschen Ketten , 1936 .

[4]  Blake S. Pollard A Second Law for Open Markov Processes , 2016, Open Syst. Inf. Dyn..

[5]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[6]  Mikhail Prokopenko,et al.  Transfer Entropy and Transient Limits of Computation , 2014, Scientific Reports.

[7]  Zurek,et al.  Algorithmic randomness and physical entropy. , 1989, Physical review. A, General physics.

[8]  Mikhail Prokopenko,et al.  On Thermodynamic Interpretation of Transfer Entropy , 2013, Entropy.

[9]  David H. Wolpert,et al.  The Free Energy Requirements of Biological Organisms; Implications for Evolution , 2016, Entropy.

[10]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[11]  Chen Jia A solution to the reversible embedding problem for finite Markov chains , 2016, 1605.03502.

[12]  David H. Wolpert,et al.  Extending Landauer's Bound from Bit Erasure to Arbitrary Computation , 2015, 1508.05319.

[13]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2011, Nature.

[14]  Mikhail Prokopenko,et al.  Information thermodynamics of near-equilibrium computation. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  U. Seifert,et al.  Optimal finite-time processes in stochastic thermodynamics. , 2007, Physical review letters.

[16]  R. Landauer The physical nature of information , 1996 .

[17]  Michael M. Wolf,et al.  The Complexity of Relating Quantum Channels to Master Equations , 2009, 0908.2128.

[18]  A. C. Barato,et al.  Coherence of biochemical oscillations is bounded by driving force and network topology. , 2017, Physical review. E.

[19]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[20]  K. Funo,et al.  Speed Limit for Classical Stochastic Processes. , 2018, Physical review letters.

[21]  S. Johansen,et al.  A Bang-Bang representation for 3×3 embeddable stochastic matrices , 1979 .

[22]  M. Esposito Stochastic thermodynamics under coarse graining. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[24]  Eric Lutz,et al.  Comment on "Minimal energy cost for thermodynamic information processing: measurement and information erasure". , 2010, Physical review letters.

[25]  E. Fredkin Digital mechanics: an informational process based on reversible universal cellular automata , 1990 .

[26]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[27]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  B. Fuglede On the imbedding problem for stochastic and doubly stochastic matrices , 1988 .

[29]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[30]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[31]  L. Brillouin,et al.  Science and information theory , 1956 .

[32]  Udo Seifert,et al.  Cost and Precision of Brownian Clocks , 2016, 1610.07960.

[33]  D. Wolpert,et al.  Dependence of dissipation on the initial distribution over states , 2016, 1607.00956.

[34]  Andrew F. Rex,et al.  Maxwell's Demon, Entropy, Information, Computing , 1990 .

[35]  Dean J. Driebe,et al.  Generalization of the second law for a transition between nonequilibrium states , 2010 .

[36]  Farid Chejne,et al.  A simple derivation of crooks relation , 2013 .

[37]  Massimiliano Esposito,et al.  Finite-time thermodynamics for a single-level quantum dot , 2009, 0909.3618.

[38]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[39]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[40]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[41]  J. Kingman The imbedding problem for finite Markov chains , 1962 .

[42]  J. Howie,et al.  The Subsemigroup Generated By the Idempotents of a Full Transformation Semigroup , 1966 .

[43]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[44]  B. Singer,et al.  Total positivity and the embedding problem for Markov chains , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[45]  T. Cubitt,et al.  The complexity of divisibility , 2014, Linear algebra and its applications.

[46]  M. Esposito,et al.  Finite-time erasing of information stored in fermionic bits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  N. Margolus,et al.  Invertible cellular automata: a review , 1991 .

[48]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[49]  Jordan M. Horowitz,et al.  Designing optimal discrete-feedback thermodynamic engines , 2011, 1110.6808.

[50]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  Bjarne Andresen,et al.  Thermodynamics for Processes in Finite Time , 1984 .

[52]  Shizume Heat generation required by information erasure. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  H. Hasegawa,et al.  Generalization of the Second Law for a Nonequilibrium Initial State , 2009, 0907.1569.

[54]  M. Esposito,et al.  Three faces of the second law. I. Master equation formulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[56]  S Turgut Relations between entropies produced in nondeterministic thermodynamic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[58]  G. S. Goodman An intrinsic time for non-stationary finite markov chains , 1970 .

[59]  Karoline Wiesner,et al.  Information-theoretic lower bound on energy cost of stochastic computation , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[61]  P. Gaspard Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics , 2006, cond-mat/0603382.

[62]  David H. Wolpert,et al.  A space–time tradeoff for implementing a function with master equation dynamics , 2017, Nature Communications.

[63]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[64]  Lloyd,et al.  Use of mutual information to decrease entropy: Implications for the second law of thermodynamics. , 1989, Physical review. A, General physics.

[65]  Alan T. Sherman,et al.  A Note on Bennett's Time-Space Tradeoff for Reversible Computation , 1990, SIAM J. Comput..

[66]  T. Rogers,et al.  From empirical data to time-inhomogeneous continuous Markov processes. , 2016, Physical review. E.

[67]  David A. Sivak,et al.  Thermodynamic metrics and optimal paths. , 2012, Physical review letters.

[68]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[69]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[70]  S. Johansen A central limit theorem for finite semigroups and its application to the imbedding problem for finite state Markov chains , 1973 .

[71]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[72]  Patrick R. Zulkowski,et al.  Optimal finite-time erasure of a classical bit. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  T. Sagawa Thermodynamic and logical reversibilities revisited , 2013, 1311.1886.

[74]  Masahito Ueda,et al.  Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. , 2012, Physical review letters.

[75]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[76]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[77]  Christian Van Den Broeck,et al.  Stochastic thermodynamics: A brief introduction , 2013 .

[78]  Jordan M. Horowitz,et al.  Inferring dissipation from current fluctuations , 2016 .

[79]  Massimiliano Esposito,et al.  Ensemble and trajectory thermodynamics: A brief introduction , 2014, 1403.1777.

[80]  Rolf Landauer,et al.  Minimal Energy Requirements in Communication , 1996, Science.

[81]  Joel E. Cohen,et al.  Nonnegative ranks, decompositions, and factorizations of nonnegative matrices , 1993 .