Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma

[1]  David T. W. Jones,et al.  Molecular, Pathological, Radiological, and Immune Profiling of Non-brainstem Pediatric High-Grade Glioma from the HERBY Phase II Randomized Trial , 2018, Cancer cell.

[2]  Tracy T Batchelor,et al.  Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq , 2018, Science.

[3]  R. Emerson,et al.  Immunophenotyping of pediatric brain tumors: correlating immune infiltrate with histology, mutational load, and survival and assessing clonal T cell response , 2018, Journal of Neuro-Oncology.

[4]  Christopher W Mount,et al.  Potent antitumor efficacy of anti-GD2 CAR T-cells in H3K27M+ diffuse midline gliomas , 2018, Nature Medicine.

[5]  Kun Mu,et al.  Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma , 2017, Cancer cell.

[6]  M. Monje,et al.  Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma , 2017, Cell.

[7]  R. Martuza,et al.  Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. , 2017, Cancer cell.

[8]  C. Ries,et al.  Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy , 2017, Journal of Immunotherapy for Cancer.

[9]  B. Kamińska,et al.  Immune microenvironment of gliomas , 2017, Laboratory Investigation.

[10]  M. Monje,et al.  A Protocol for Rapid Post-mortem Cell Culture of Diffuse Intrinsic Pontine Glioma (DIPG) , 2017, Journal of visualized experiments : JoVE.

[11]  R. Ellenbogen,et al.  NKG2D ligand expression in pediatric brain tumors , 2016, Cancer biology & therapy.

[12]  M. Monje,et al.  Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry study. , 2016, Neuro-oncology.

[13]  J. Brown,et al.  Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. , 2016, Neuro-oncology.

[14]  Eric C. Holland,et al.  The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas , 2016, Science.

[15]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[16]  M. Prados,et al.  Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. , 2016, Neuro-oncology.

[17]  Ginu A. Thomas,et al.  Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. , 2016, JCI insight.

[18]  Helmut Kettenmann,et al.  The role of microglia and macrophages in glioma maintenance and progression , 2015, Nature Neuroscience.

[19]  M. Weller,et al.  Immunosuppressive mechanisms in glioblastoma. , 2015, Neuro-oncology.

[20]  M. Meyerson,et al.  BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology , 2015, Acta Neuropathologica.

[21]  P. Varlet,et al.  Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas , 2015, Child's Nervous System.

[22]  T. Pietsch,et al.  High frequency of H3F3AK27M mutations characterizes pediatric and adult high-grade gliomas of the spinal cord , 2015, Acta Neuropathologica.

[23]  Nicholas J. Wang,et al.  Functionally-defined Therapeutic Targets in Diffuse Intrinsic Pontine Glioma , 2015, Nature Medicine.

[24]  Martin L. Miller,et al.  Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer , 2015, Science.

[25]  M. Kieran Time to rethink the unthinkable: Upfront biopsy of children with newly diagnosed diffuse intrinsic pontine glioma (DIPG) , 2015, Pediatric blood & cancer.

[26]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[27]  R. Emerson,et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance , 2014, Nature.

[28]  T. Lagerweij,et al.  Human pontine glioma cells can induce murine tumors , 2014, Acta Neuropathologica.

[29]  R. Glass,et al.  CNS macrophages and peripheral myeloid cells in brain tumours , 2014, Acta Neuropathologica.

[30]  Stephen Yip,et al.  Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma , 2014, Nature Genetics.

[31]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[32]  Liliana Goumnerova,et al.  Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma , 2014, Nature Genetics.

[33]  Michael Brudno,et al.  Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations , 2014, Nature Genetics.

[34]  S. Gordon,et al.  The M1 and M2 paradigm of macrophage activation: time for reassessment , 2014, F1000prime reports.

[35]  David T. W. Jones,et al.  Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge , 2014, Nature Reviews Cancer.

[36]  V. Amani,et al.  Characterization of Distinct Immunophenotypes across Pediatric Brain Tumor Types , 2013, The Journal of Immunology.

[37]  Christina S. Leslie,et al.  CSF-1R inhibition alters macrophage polarization and blocks glioma progression , 2013, Nature Medicine.

[38]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[39]  M. Prados,et al.  Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children , 2013, Child's Nervous System.

[40]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[41]  A. Aguzzi,et al.  Microglia: Scapegoat, Saboteur, or Something Else? , 2013, Science.

[42]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[43]  J. Mosser,et al.  Immune genes are associated with human glioblastoma pathology and patient survival , 2012, BMC Medical Genomics.

[44]  David T. W. Jones,et al.  K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas , 2012, Acta Neuropathologica.

[45]  W. Vandertop,et al.  Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. , 2012, Cancer treatment reviews.

[46]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[47]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[48]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[49]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[50]  Alberto Mantovani,et al.  Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 , 2006, The Journal of Immunology.

[51]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. Bacino,et al.  A case of familial isolated hemihyperplasia , 2004, BMC Medical Genetics.

[53]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[54]  M. Monje,et al.  Supplemental Information Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma , 2017 .

[55]  Michelle Monje,et al.  Diffuse Intrinsic Pontine Glioma: New Pathophysiological Insights and Emerging Therapeutic Targets , 2016, Current neuropharmacology.

[56]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.