ON AN OPEN TRANSIENT SCHRÖDINGER–POISSON SYSTEM

A mathematical model of quantum transient transport in dimension d=2, 3 is derived and analyzed. The model describes the evolution of electrons injected into the device by reservoirs having a stationary statistics. The electrostatic potential in the device is modified by electron presence through electrostatic interaction. The wave functions are computed in the device region and satisfy nonhomogeneous open boundary conditions at the device edges. A priori estimates are deduced from the "dissipative properties" of the boundary conditions and from the repulsive character of the electrostatic interaction.

[1]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[2]  F. Nier The dynamics of some quantum open systems with short-range nonlinearities , 1998 .

[3]  Reinhard Illner,et al.  Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner–Poisson and Schrödinger‐Poisson systems , 1994 .

[4]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[5]  Franco Brezzi,et al.  The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation , 1991 .

[6]  N. Abdallah,et al.  QUANTUM PHYSICS; PARTICLES AND FIELDS 4241 On a multidimensional Schrodinger-Poisson scattering model for semiconductors , 2000 .

[7]  Sergio Vessella,et al.  Abel Integral Equations , 1990 .

[8]  Xing Li Absorbing Boundary Conditions for the Numerical Simulation of Acoustic Waves , 2006 .

[9]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[10]  F. Castella,et al.  L2 Solutions to the Schrödinger–Poisson System: Existence, Uniqueness, Time Behaviour, and Smoothing Effects , 1997 .

[11]  Christophe Besse,et al.  CONSTRUCTION, STRUCTURE AND ASYMPTOTIC APPROXIMATIONS OF A MICRODIFFERENTIAL TRANSPARENT BOUNDARY CONDITION FOR THE LINEAR SCHRÖDINGER EQUATION , 2001 .

[12]  Olivier Pinaud,et al.  A mathematical model for the transient evolution of a resonant tunneling diode , 2002 .

[13]  F. Nier A variational formulation of schrödinger-poisson systems in dimension d ≤ 3 , 1993 .

[14]  R. Feldman Construction , 2004, SP-110: Hyperbolic Paraboloid Shells.

[15]  P. Degond,et al.  On a one-dimensional Schrödinger-Poisson scattering model , 1997 .

[16]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation , 2001 .

[17]  Anton Arnold,et al.  Numerically Absorbing Boundary Conditions for Quantum Evolution Equations , 1998, VLSI Design.

[18]  A. V. Popov,et al.  Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .

[19]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[20]  Olivier Pinaud,et al.  Transient simulations of a resonant tunneling diode , 2002 .

[21]  Schrödinger-Poisson systems in dimension d ≦ 3: The whole-space case , 1993 .

[22]  F. Nier A Stationary Schrödinger-Poisson System Arising from the Modelling of Electronic Devices , 1990 .