Lower bounds for the Estrada index using mixing time and Laplacian spectrum

The logarithm of the Estrada index has been recently proposed as a spectral measure to characterize the robustness of complex networks. We derive novel analytic lower bounds for the logarithm of the Estrada index based on the Laplacian spectrum and the mixing times of random walks on the network. The main techniques employed are some inequalities, such as the thermodynamic inequality in statistical mechanics, a trace inequality of von Neumann, and a refined harmonic-arithmetic mean inequality.

[1]  Yi-Zheng Fan,et al.  Estrada Index of Random Graphs , 2012 .

[2]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[3]  Ernesto Estrada Characterization of 3D molecular structure , 2000 .

[4]  Yilun Shang,et al.  Biased edge failure in scale-free networks based on natural connectivity , 2012 .

[5]  Steve Kirkland,et al.  Fastest expected time to mixing for a Markov chain on a directed graph , 2010 .

[6]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[7]  Natália Bebiano,et al.  Matrix inequalities in Statistical Mechanics , 2004 .

[8]  Ernesto Estrada,et al.  Statistical-mechanical approach to subgraph centrality in complex networks , 2007, 0905.4098.

[9]  Peter R. Mercer Refined Arithmetic, Geometric and Harmonic Mean Inequalities , 2003 .

[10]  Mark Levene,et al.  Kemeny's Constant and the Random Surfer , 2002, Am. Math. Mon..

[11]  Norman Biggs Algebraic Graph Theory: Index , 1974 .

[12]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[13]  Jeffrey J. Hunter,et al.  Mixing times with applications to perturbed Markov chains , 2006 .

[14]  L. Mirsky A trace inequality of John von Neumann , 1975 .

[15]  I. I. M. S. Massey Mixing Times with Applications to Perturbed Markov Chains , 2003 .

[16]  M. Krishnamoorthy,et al.  Fault diameter of interconnection networks , 1987 .

[17]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[18]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[19]  H. A. Jung,et al.  On a class of posets and the corresponding comparability graphs , 1978, J. Comb. Theory B.

[20]  Frank Harary,et al.  Conditional connectivity , 1983, Networks.

[21]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[22]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[23]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Stephen J. Kirkland,et al.  The Kemeny Constant for Finite Homogeneous Ergodic Markov Chains , 2010, J. Sci. Comput..

[25]  Shang Yi-Lun Local Natural Connectivity in Complex Networks , 2011 .

[26]  Wu Jun,et al.  Natural Connectivity of Complex Networks , 2010 .

[27]  Vasek Chvátal,et al.  Tough graphs and hamiltonian circuits , 1973, Discret. Math..