Simulation of dc atmospheric pressure argon micro glow-discharge

A hybrid model was used to simulate a dc argon micro glow-discharge at atmospheric pressure. The simulations were carried out for a pin-plate electrode configuration with inter-electrode gap spacing of 200??m together with an external circuit. The predicted voltage?current characteristics and current density profiles identify the discharge to be a normal glow-discharge. The neutral gas temperature predictions indicate that the discharge forms a non-thermal, non-equilibrium plasma. Experimental studies were conducted to validate the numerical model. Predictions from the numerical model compare favourably with the experimental measurements.

[1]  Richard N. Zare,et al.  Optical diagnostics of atmospheric pressure air plasmas , 2003 .

[2]  Effects of reactor pressure on two-dimensional radio-frequency methane plasma: a numerical study , 1999 .

[3]  Dennis W. Hewett,et al.  Analytic model of power deposition in inductively coupled plasma sources , 1995 .

[4]  J. Roth Industrial Plasma Engineering , 1995 .

[5]  V. M. Donnelly,et al.  Spatially resolved diagnostics of an atmospheric pressure direct current helium microplasma , 2005 .

[6]  B. Shen,et al.  The effect of Mn substitution in LaFe11.7Si1.3 compound on the magnetic properties and magnetic entropy changes , 2003 .

[7]  E. Elson,et al.  An investigation of the secondary electron kinetics and energy distribution in electron-beam-irradiated argon , 1996 .

[8]  Bakhtier Farouk,et al.  Characterization of a dc atmospheric pressure normal glow discharge , 2005 .

[9]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[10]  M. Kushner Modelling of microdischarge devices: plasma and gas dynamics , 2005 .

[11]  Stephen D. Rockwood,et al.  Elastic and Inelastic Cross Sections for Electron-Hg Scattering from Hg Transport Data , 1973 .

[12]  M. Meyyappan,et al.  Radio frequency discharge modeling: Moment equations approach , 1993 .

[13]  Xiaohui Yuan,et al.  Computational study of capacitively coupled high-pressure glow discharges in helium , 2003 .

[14]  K. Terashima,et al.  Multiple microscale plasma CVD apparatuses on a substrate , 2001 .

[15]  M S Benilov,et al.  Simulation of the layer of non-equilibrium ionization in a high-pressure argon plasma with multiply-charged ions , 2000 .

[16]  M. Kushner,et al.  Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model , 1992 .

[17]  D. Graves,et al.  Two‐dimensional fluid model of high density inductively coupled plasma sources , 1994 .

[18]  Neutral and charged particle simulation of a RF argon plasma , 1996 .

[19]  K. Niemax,et al.  Plasmas for lab-on-the-chip applications , 2002 .

[20]  Vladimir Kolobov,et al.  Two-dimensional simulations of the transition from Townsend to glow discharge and subnormal oscillations , 2003 .

[21]  Y. Yin,et al.  Miniaturization of inductively coupled plasma sources , 1999 .

[22]  K. Uchino,et al.  Direct measurement of electron density and temperature distributions in a micro-discharge plasma for a plasma display panel , 2002 .

[23]  F. Kannari,et al.  Theoretical simulation of electron-beam-excited xenon-chloride (XeCl) lasers , 1983 .

[24]  I. J. Morey,et al.  Self‐consistent simulation of a parallel‐plate rf discharge , 1988 .

[25]  G. Petrov,et al.  Numerical modeling of the constriction of the dc positive column in rare gases , 1999 .

[26]  James Gary Eden,et al.  Development and characterization of micromachined hollow cathode plasma display devices , 2002 .

[27]  B. Farouk,et al.  Particle simulation of radio-frequency plasma discharges of methane for carbon film deposition , 1998 .

[28]  K. Tachibana,et al.  Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure , 2005 .

[29]  J. Boeuf,et al.  Numerical model of rf glow discharges. , 1987, Physical review. A, General physics.

[30]  B. M. Penetrante,et al.  ELENDIF: A time-dependent Boltzmann solver for partially ionized plasmas , 1990 .

[31]  Vladimir Kolobov,et al.  Fokker–Planck modeling of electron kinetics in plasmas and semiconductors , 2003 .

[32]  K. Terashima,et al.  Development of plasma chip , 2000 .

[33]  Tachibana Excitation of the 1s5,1s4, 1s3, and 1s2 levels of argon by low-energy electrons. , 1986, Physical review. A, General physics.

[34]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[35]  T. Kunugi,et al.  Numerical simulation of heat transfer and fluid flow of a non-equilibrium argon plasma jet with confined wall , 1995 .

[36]  M. Surendra,et al.  Particle simulations of radio-frequency glow discharges , 1991 .

[37]  Robert Arslanbekov,et al.  Model of the cathode region and gas temperature of a dc glow discharge at high current density , 2000 .

[38]  Mark J. Kushner,et al.  Modeling of microdischarge devices: Pyramidal structures , 2004 .