New Modified-Multiwall Carbon Nanotubes Paste Electrode for Electrocatalytic Oxidation and Determination of Hydrazine Using Square Wave Voltammetry

[1]  A. Ensafi,et al.  Determination of 6-mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubes-TiO2 as a voltammetric sensor. , 2012, Drug testing and analysis.

[2]  A. Ensafi,et al.  A Voltammetric Sensor for the Simultaneous Determination of l-Cysteine and Tryptophan Using a p-Aminophenol-Multiwall Carbon Nanotube Paste Electrode , 2011, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[3]  A. Ensafi,et al.  A Voltammetric Sensor Based on Modified Multiwall Carbon Nanotubes for Cysteamine Determination in the Presence of Tryptophan Using p-Aminophenol as a Mediator , 2010 .

[4]  B. Rezaei,et al.  p-Aminophenol-multiwall carbon nanotubes-TiO2 electrode as a sensor for simultaneous determination of penicillamine and uric acid. , 2010, Colloids and surfaces. B, Biointerfaces.

[5]  A. Ensafi,et al.  Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator , 2010 .

[6]  H. Karimi-Maleh,et al.  Sensitive and Selective Determination of Phenylhydrazine in the Presence of Hydrazine at a Ferrocene Monocarboxylic Acid Modified Carbon Nanotube Paste Electrode , 2009 .

[7]  A. Allafchian,et al.  Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode , 2009 .

[8]  A. Ensafi,et al.  Ferrocenedicarboxylic acid modified carbon paste electrode: a sensor for electrocatalytic determination of hydrochlorothiazide , 2009 .

[9]  A. Ensafi,et al.  Electrocatalytic Determination of 6-Tioguanine at a p-Aminophenol Modified Carbon Paste Electrode , 2008 .

[10]  S. S. Narayanan,et al.  Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite-wax composite electrode. , 2007, Journal of hazardous materials.

[11]  N. Nasirizadeh,et al.  Electrocatalytic Characteristics of Hydrazine and Hydroxylamine Oxidation at Coumestan Modified Carbon Paste Electrode , 2006 .

[12]  A. Ensafi,et al.  Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode , 2005 .

[13]  T. Nyokong,et al.  Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. , 2005, Talanta.

[14]  Li Zhang,et al.  Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2 , 2005 .

[15]  J. Ledesma-García,et al.  Dendrimer modified thiolated gold surfaces as sensor devices for halogenated alkyl-carboxylic acids in aqueous medium. A promising new type of surfaces for electroanalytical applications , 2003 .

[16]  M. Karimi,et al.  Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. , 2002, Talanta.

[17]  Xueji Zhang,et al.  Cobalt and Copper Hexacyanoferrate Modified Carbon Fiber Microelectrode as an All‐Solid Potentiometric Microsensor for Hydrazine , 2000 .

[18]  F. Scholz,et al.  A Comparative Study of the Electrocatalytic Activities of Some Metal Hexacyanoferrates for the Oxidation of Hydrazine , 1999 .

[19]  H. Zare,et al.  Electrocatalytic oxidation of hydrazine at a chlorogenic acid (CGA) modified glassy carbon electrode , 1999 .

[20]  J. S. Budkuley Determination of hydrazine and sulphite in the presence of one another , 1992 .

[21]  V. Gupta,et al.  Spectrophotometric determination of trace amounts of hydrazine in polluted water. , 1988, The Analyst.