Recent Developments in Sentiment Analysis on Social Networks: Techniques, Datasets, and Open Issues

[1]  Julio Villena-Román,et al.  TASS 2014 - The Challenge of Aspect-based Sentiment Analysis , 2015, Proces. del Leng. Natural.

[2]  Kathleen R. McKeown,et al.  Predicting the semantic orientation of adjectives , 1997 .

[3]  S.C. Hui,et al.  A fuzzy FCA-based approach for citation-based document retrieval , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[4]  João Francisco Valiati,et al.  Document-level sentiment classification: An empirical comparison between SVM and ANN , 2013, Expert Syst. Appl..

[5]  Frano Skopljanac-Macina,et al.  Formal Concept Analysis – Overview and Applications , 2014 .

[6]  Harith Alani,et al.  Semantic Sentiment Analysis of Twitter , 2012, SEMWEB.

[7]  Zhiyong Luo,et al.  Combination of Convolutional and Recurrent Neural Network for Sentiment Analysis of Short Texts , 2016, COLING.

[8]  Huan Liu,et al.  Unsupervised sentiment analysis with emotional signals , 2013, WWW.

[9]  Lalit M. Patnaik,et al.  Genetic algorithms: a survey , 1994, Computer.

[10]  Weijian Ren,et al.  Sentiment Detection of Web Users Using Probabilistic Latent Semantic Analysis , 2014, J. Multim..

[11]  Suad Alhojely,et al.  Sentiment Analysis and Opinion Mining: A Survey , 2016 .

[12]  Youness Madani,et al.  Sentiment analysis using semantic similarity and Hadoop MapReduce , 2018, Knowledge and Information Systems.

[13]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[14]  Vo Ngoc Phu Latent Semantic Analysis using a Dennis Coefficient for English Sentiment Classification in a Parallel System , 2018, Int. J. Comput. Commun. Control.

[15]  Philip Treleaven,et al.  Twitter Sentiment Analysis , 2015, ArXiv.

[16]  Maxim Shcherbakov,et al.  Detection and Prediction of Users Attitude Based on Real-Time and Batch Sentiment Analysis of Facebook Comments , 2016, CSoNet.

[17]  Alexandra Balahur,et al.  Sentiment Analysis in Social Media Texts , 2013, WASSA@NAACL-HLT.

[18]  Luis Alfonso Ureña López,et al.  Polarity classification for Spanish tweets using the COST corpus , 2015, J. Inf. Sci..

[19]  Yi Zheng,et al.  Weakly-Supervised Deep Learning for Customer Review Sentiment Classification , 2016, IJCAI.

[20]  Shubhamoy Dey,et al.  A boosted SVM based sentiment analysis approach for online opinionated text , 2013, RACS.

[21]  D. A. Borikar,et al.  Dictionary Based Approach to Sentiment Analysis - A Review , 2016 .

[22]  Irina Rish,et al.  An empirical study of the naive Bayes classifier , 2001 .

[23]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Kam-Fai Wong,et al.  Is Twitter A Better Corpus for Measuring Sentiment Similarity? , 2013, EMNLP.

[25]  Harith Alani,et al.  Evaluation Datasets for Twitter Sentiment Analysis: A survey and a new dataset, the STS-Gold , 2013, ESSEM@AI*IA.

[26]  Nada Lavrac,et al.  Stream-based active learning for sentiment analysis in the financial domain , 2014, Inf. Sci..

[27]  Lan Wang,et al.  Sentiment Classification of Documents Based on Latent Semantic Analysis , 2011 .

[28]  Cheng Li,et al.  Affective-feature-based sentiment analysis using SVM classifier , 2016, 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD).

[29]  Mong-Li Lee,et al.  Mitigating Misinformation in Online Social Network with Top-k Debunkers and Evolving User Opinions , 2020, WWW.

[30]  Jyoti Gautam,et al.  Real time sentiment analysis of tweets using Naive Bayes , 2016, 2016 2nd International Conference on Next Generation Computing Technologies (NGCT).

[31]  Seong Joon Yoo,et al.  Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews , 2012, Expert Syst. Appl..

[32]  Saif Mohammad,et al.  Examining Gender and Race Bias in Two Hundred Sentiment Analysis Systems , 2018, *SEMEVAL.

[33]  Cícero Nogueira dos Santos Think Positive: Towards Twitter Sentiment Analysis from Scratch , 2014, SemEval@COLING.

[34]  Saif Mohammad,et al.  Generating High-Coverage Semantic Orientation Lexicons From Overtly Marked Words and a Thesaurus , 2009, EMNLP.

[35]  Shuai Wang,et al.  Deep learning for sentiment analysis: A survey , 2018, WIREs Data Mining Knowl. Discov..

[36]  Paolo Rosso,et al.  Emotions and Irony per Gender in Facebook , 2014 .

[37]  José Manuel Perea Ortega,et al.  Sentiment analysis system adaptation for multilingual processing: The case of tweets , 2015, Inf. Process. Manag..

[38]  Estevam R. Hruschka,et al.  Tweet sentiment analysis with classifier ensembles , 2014, Decis. Support Syst..

[39]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[40]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[41]  José Carlos González,et al.  TASS 2013 - A Second Step in Reputation Analysis in Spanish , 2014, Proces. del Leng. Natural.

[42]  Peter D. Turney Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL , 2001, ECML.

[43]  M. Govindarajan SENTIMENT CLASSIFICATION OF MOVIE REVIEWS USING HYBRID METHOD , 2014 .

[44]  Akrati Saxena,et al.  Centrality Measures in Complex Networks: A Survey , 2020, ArXiv.

[45]  Hua Xu,et al.  Weakness Finder: Find product weakness from Chinese reviews by using aspects based sentiment analysis , 2012, Expert Syst. Appl..

[46]  Eugenio Martínez-Cámara,et al.  TASS - Workshop on Sentiment Analysis at SEPLN TASS - Taller de Análisis de Sentimientos en la SEPLN , 2013 .

[47]  Li Chen,et al.  News impact on stock price return via sentiment analysis , 2014, Knowl. Based Syst..

[48]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[49]  M. Cha,et al.  Rumor Detection over Varying Time Windows , 2017, PloS one.

[50]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[51]  Zhi-Hua Zhou,et al.  A brief introduction to weakly supervised learning , 2018 .

[52]  Xiaojin Zhu,et al.  Seeing stars when there aren’t many stars: Graph-based semi-supervised learning for sentiment categorization , 2006 .

[53]  Erik Cambria,et al.  Aspect extraction for opinion mining with a deep convolutional neural network , 2016, Knowl. Based Syst..

[54]  Gyu Sang Choi,et al.  Tweets Classification on the Base of Sentiments for US Airline Companies , 2019, Entropy.

[55]  Richard Tzong-Han Tsai,et al.  Using relation selection to improve value propagation in a ConceptNet-based sentiment dictionary , 2014, Knowl. Based Syst..

[56]  Julio Villena-Román,et al.  Overview of TASS 2016 , 2016, TASS@SEPLN.

[57]  Sasha Blair-Goldensohn,et al.  The viability of web-derived polarity lexicons , 2010, NAACL.

[58]  Khin Phyu Phyu Shein Ontology based combined approach for sentiment classification , 2009, ICC 2009.

[59]  Mykola Pechenizkiy,et al.  RBEM: a rule based approach to polarity detection , 2013, WISDOM '13.

[60]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[61]  Rochdi Messoussi,et al.  A novel adaptable approach for sentiment analysis on big social data , 2018, Journal of Big Data.

[62]  Phu Vo Ngoc Latent Semantic Analysis using a Dennis Coefficient for English Sentiment Classification in a Parallel System , 2018 .

[63]  Saif Mohammad,et al.  Sentiment Analysis of Short Informal Texts , 2014, J. Artif. Intell. Res..

[64]  Erik Cambria,et al.  An Introduction to Concept-Level Sentiment Analysis , 2013, MICAI.

[65]  Sandra M. Aluísio,et al.  An Evaluation of the Brazilian Portuguese LIWC Dictionary for Sentiment Analysis , 2013, STIL.

[66]  Wu He,et al.  A bilingual approach for conducting Chinese and English social media sentiment analysis , 2014, Comput. Networks.

[67]  Ghazaleh Beigi,et al.  An Overview of Sentiment Analysis in Social Media and Its Applications in Disaster Relief , 2016, Sentiment Analysis and Ontology Engineering.

[68]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[69]  F. Y. Wu The Potts model , 1982 .

[70]  Xiaoyan Zhu,et al.  Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification , 2017, ACM Trans. Inf. Syst..

[71]  Monali Bordoloi,et al.  E-commerce sentiment analysis using graph based approach , 2017, 2017 International Conference on Inventive Computing and Informatics (ICICI).

[72]  Jeffrey Pennington,et al.  Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions , 2011, EMNLP.

[73]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[74]  Gan Wenyan,et al.  Machine Learning and Lexicon Based Methods for Sentiment Classification: A Survey , 2014 .

[75]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[76]  Phil Blunsom,et al.  A Convolutional Neural Network for Modelling Sentences , 2014, ACL.

[77]  David A. Shamma,et al.  Characterizing debate performance via aggregated twitter sentiment , 2010, CHI.

[78]  Hiroshi Kanayama,et al.  Fully Automatic Lexicon Expansion for Domain-oriented Sentiment Analysis , 2006, EMNLP.

[79]  Guodong Zhou,et al.  Semi-Supervised Learning for Imbalanced Sentiment Classification , 2011, IJCAI.

[80]  Flavius Frasincar,et al.  A Statistical Approach to Star Rating Classification of Sentiment , 2012, IS-MiS.

[81]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[82]  Yen-Liang Chen,et al.  Opinion mining from online hotel reviews - A text summarization approach , 2017, Inf. Process. Manag..

[83]  Sotiris Ioannidis,et al.  A fine-grained social network recommender system , 2019, Social Network Analysis and Mining.

[84]  Deyu Zhou,et al.  Self-training from labeled features for sentiment analysis , 2011, Inf. Process. Manag..

[85]  Jason Baldridge,et al.  Twitter Polarity Classification with Label Propagation over Lexical Links and the Follower Graph , 2011, ULNLP@EMNLP.

[86]  Guillermo Sapiro,et al.  If you are happy and you know it... tweet , 2012, CIKM '12.

[87]  Yibai Li,et al.  Business intelligence in online customer textual reviews: Understanding consumer perceptions and influential factors , 2017, Int. J. Inf. Manag..

[88]  Munir Ahmad,et al.  SVM Optimization for Sentiment Analysis , 2018 .

[89]  Nilesh M. Shelke,et al.  Domain Independent Approach for Aspect Oriented Sentiment Analysis for Product Reviews , 2016, FICTA.

[90]  Takashi Inui,et al.  Extracting Semantic Orientations of Phrases from Dictionary , 2007, NAACL.

[91]  Mohammad Soleymani,et al.  A survey of multimodal sentiment analysis , 2017, Image Vis. Comput..

[92]  Yang Liu,et al.  A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm , 2017, Inf. Sci..

[93]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[94]  Erik Cambria,et al.  SenticNet 2: A Semantic and Affective Resource for Opinion Mining and Sentiment Analysis , 2012, FLAIRS.

[95]  Wei-keng Liao,et al.  SES: Sentiment Elicitation System for Social Media Data , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[96]  Mohammed Erritali,et al.  Machine Learning and Semantic Sentiment Analysis based Algorithms for Suicide Sentiment Prediction in Social Networks , 2017, EUSPN/ICTH.

[97]  Xin Wang,et al.  Predicting Polarities of Tweets by Composing Word Embeddings with Long Short-Term Memory , 2015, ACL.

[98]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[99]  Thi Thi Soe Nyunt,et al.  Sentiment Classification Based on Ontology and SVM Classifier , 2010, 2010 Second International Conference on Communication Software and Networks.

[100]  Chun Chen,et al.  DASA: Dissatisfaction-oriented Advertising based on Sentiment Analysis , 2010, Expert Syst. Appl..

[101]  Marcelo Mendoza,et al.  Combining strengths, emotions and polarities for boosting Twitter sentiment analysis , 2013, WISDOM '13.

[102]  Kim Schouten,et al.  COMMIT-P1WP3: A Co-occurrence Based Approach to Aspect-Level Sentiment Analysis , 2014, *SEMEVAL.

[103]  Mike Thelwall,et al.  Sentiment strength detection for the social web , 2012, J. Assoc. Inf. Sci. Technol..

[104]  Rupal Bhargava,et al.  Neural Network-Based Architecture for Sentiment Analysis in Indian Languages , 2019, J. Intell. Syst..

[105]  Paolo Rosso,et al.  Making objective decisions from subjective data: Detecting irony in customer reviews , 2012, Decis. Support Syst..

[106]  Pablo Gamallo,et al.  Citius: A Naive-Bayes Strategy for Sentiment Analysis on English Tweets , 2014, *SEMEVAL.

[107]  Sheng-Tun Li,et al.  A fuzzy conceptualization model for text mining with application in opinion polarity classification , 2013, Knowl. Based Syst..

[108]  Addlight Mukwazvure,et al.  A hybrid approach to sentiment analysis of news comments , 2015, 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions).

[109]  Young-Gab Kim,et al.  Sentiment Root Cause Analysis Based on Fuzzy Formal Concept Analysis and Fuzzy Cognitive Map , 2016, J. Comput. Inf. Sci. Eng..

[110]  Malvina Nissim,et al.  Sentiment analysis on Italian tweets , 2013, WASSA@NAACL-HLT.

[111]  Xin Yu,et al.  Compass: Spatio Temporal Sentiment Analysis of US Election What Twitter Says! , 2017, KDD.

[112]  Abhishek Kumar,et al.  A Multilayer Perceptron based Ensemble Technique for Fine-grained Financial Sentiment Analysis , 2017, EMNLP.

[113]  Nazlia Omar,et al.  Corpus-Based Techniques for Sentiment Lexicon Generation: A Review , 2019, J. Digit. Inf. Manag..

[114]  J. Platt Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines , 1998 .

[115]  Muhammad Taimoor Khan,et al.  Sentiment analysis and the complex natural language , 2016, Complex Adapt. Syst. Model..

[116]  Maria Virvou,et al.  Sentiment analysis of Facebook statuses using Naive Bayes classifier for language learning , 2013, IISA 2013.

[117]  Cícero Nogueira dos Santos,et al.  Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts , 2014, COLING.

[118]  Claudiu Cristian Musat,et al.  Semi-Supervised Method for Multi-category Emotion Recognition in Tweets , 2014, 2014 IEEE International Conference on Data Mining Workshop.

[119]  Walaa Medhat,et al.  Sentiment analysis algorithms and applications: A survey , 2014 .

[120]  Antonio Moreno-Ortiz,et al.  Identifying Polarity in Financial Texts for Sentiment Analysis: A Corpus-based Approach , 2015 .

[121]  Qiang Dong,et al.  Hownet and the Computation of Meaning: (With CD-ROM) , 2006 .

[122]  Bing Qin,et al.  Integrating Intra- and Inter-document Evidences for Improving Sentence Sentiment Classification: Integrating Intra- and Inter-document Evidences for Improving Sentence Sentiment Classification , 2010 .

[123]  Brendan T. O'Connor,et al.  From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series , 2010, ICWSM.

[124]  Julio Gonzalo,et al.  Overview of RepLab 2013: Evaluating Online Reputation Monitoring Systems , 2013, CLEF.

[125]  Xiaolong Wang,et al.  Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach , 2011, CIKM '11.

[126]  Darnes Vilariño Ayala,et al.  UDLAP: Sentiment Analysis Using a Graph-Based Representation , 2015, *SEMEVAL.

[127]  Yanqing Zhang,et al.  Neural networks for sentiment analysis on Twitter , 2015, 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC).

[128]  Nick Bassiliades,et al.  Ontology-based sentiment analysis of twitter posts , 2013, Expert Syst. Appl..

[129]  Hongbo Xu,et al.  Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis , 2009, ECIR.

[130]  Rajeev Kumar,et al.  A Sentiment Analysis based Approach to Facebook User Recommendation , 2014 .

[131]  John Carroll,et al.  Weakly supervised techniques for domain-independent sentiment classification , 2009, TSA@CIKM.

[132]  Shih-Hsiang Huang,et al.  Effects of sentiment on recommendations in social network , 2018, Electron. Mark..

[133]  Hua Xu,et al.  Grouping Product Features Using Semi-Supervised Learning with Soft-Constraints , 2010, COLING.

[134]  Sanjida Akter,et al.  Sentiment analysis on facebook group using lexicon based approach , 2016, 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT).

[135]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[136]  Kim Schouten,et al.  Finding Implicit Features in Consumer Reviews for Sentiment Analysis , 2014, ICWE.

[137]  Mark Levene,et al.  Combining lexicon and learning based approaches for concept-level sentiment analysis , 2012, WISDOM '12.