Integrability of complex planar systems with homogeneous nonlinearities

Abstract In this paper we obtain sufficient conditions for the existence of a local analytic first integral for a family of quintic systems having homogeneous nonlinearities. The family studied in this work is the largest one classified until now for systems with such nonlinearities. We propose also an approach to find reversible systems within polynomial families of Lotka–Volterra systems with homogeneous nonlinearities.

[1]  Jaume Giné,et al.  Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities , 2011, Acta Applicandae Mathematicae.

[2]  W. Szlenk,et al.  Solution of the 1 : − 2 resonant center problem in the quadratic case , 2007 .

[3]  Xingwu Chen,et al.  Integrability conditions for complex systems with homogeneous , 2011 .

[4]  Junjie Wei,et al.  NONEXISTENCE OF PERIODIC ORBITS FOR PREDATOR-PREY SYSTEM WITH STRONG ALLEE EFFECT IN PREY POPULATIONS , 2013 .

[5]  Valery G. Romanovski,et al.  The Center and Cyclicity Problems: A Computational Algebra Approach , 2009 .

[6]  A. L. Neto Algebraic solutions of polynomial differential equations and foliations in dimension two , 1988 .

[7]  Valery G. Romanovski,et al.  Linearizability of linear systems perturbed by fifth degree homogeneous polynomials , 2007 .

[8]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[9]  Alexandra Fronville,et al.  Solution of the 1 : −2 resonant center problem in the quadratic case , 1998 .

[10]  Chaoxiong Du,et al.  Center, limit cycles and isochronous center of a Z4-equivariant quintic system , 2010 .

[11]  Christiane Rousseau,et al.  Normalizable, Integrable, and Linearizable Saddle Points for Complex Quadratic Systems in $$\mathbb{C}^2 $$ , 2003 .

[12]  Konstantin Sergeevich Sibirsky Introduction to the Algebraic Theory of Invariants of Differential Equations , 1989 .

[13]  Jaume Giné,et al.  Integrability conditions for Lotka–Volterra planar complex quintic systems , 2010 .

[14]  Valery G. Romanovski,et al.  An approach to solving systems of polynomials via modular arithmetics with applications , 2011, J. Comput. Appl. Math..

[15]  Jaume Giné,et al.  On the Formal Integrability Problem for Planar Differential Systems , 2013 .

[16]  Colin Christopher,et al.  Limit Cycles of Differential Equations , 2007 .

[17]  Jaume Giné,et al.  The nondegenerate center problem and the inverse integrating factor , 2006 .

[18]  V. Romanovski The Linearizable Centers of Time-Reversible Polynomial Systems , 2003 .

[19]  Y. Bibikov,et al.  Local Theory of Nonlinear Analytic Ordinary Differential Equations , 1979 .

[20]  Liu Yi-Reng,et al.  THEORY OF VALUES OF SINGULAR POINT IN COMPLEX AUTONOMOUS DIFFERENTIAL SYSTEMS , 1990 .

[21]  Christiane Rousseau,et al.  Normalizable, integrable and linearizable saddle points in the lotka-volterra system , 2004 .

[22]  James H. Davenport,et al.  P-adic reconstruction of rational numbers , 1982, SIGS.

[23]  Jaume Giné,et al.  Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities , 2013 .

[24]  Valery G. Romanovski,et al.  The Sibirsky component of the center variety of polynomial differential systems , 2003, J. Symb. Comput..

[25]  Xiang Zhang,et al.  Analytic normalization of analytic integrable systems and the embedding flows , 2008 .