Group 11 Borataalkene Complexes: Models for Alkene Activation
暂无分享,去创建一个
[1] A. Yadav,et al. Gold‐Catalyzed 1,2‐Diarylation of Alkenes , 2020, Angewandte Chemie.
[2] David J. D. Wilson,et al. The 9-Borataphenanthrene Anion. , 2020, Angewandte Chemie.
[3] G. Frison,et al. Comparison of Chemical and Interpretative Methods: the Carbon-Boron π-Bond as a Test Case. , 2020, Chemistry.
[4] David J. D. Wilson,et al. The 9-Borataphenanthrene Anion. , 2020, Angewandte Chemie.
[5] A. Yadav,et al. Gold-Catalyzed 1,2-Diarylation of Alkenes. , 2020, Angewandte Chemie.
[6] Nils Nöthling,et al. An air-stable binary Ni(0)–olefin catalyst , 2019, Nature Catalysis.
[7] H. Braunschweig,et al. Facile Synthesis of a Stable Dihydroboryl {BH2 }- Anion. , 2018, Angewandte Chemie.
[8] Ivo Krummenacher,et al. Einfacher Zugang zum ersten stabilen {BH 2 } − Dihydroborylanion , 2018, Angewandte Chemie.
[9] G. Frenking,et al. Vinyltrifluoroborate Complexes of Silver Supported by N -Heterocyclic Carbenes , 2018, European Journal of Inorganic Chemistry.
[10] Wei Lu,et al. Coordination of Asymmetric Diborenes towards Cationic Coinage Metals (Au, Ag, Cu). , 2018, Chemistry.
[11] P. Chirik,et al. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration , 2018, Nature Reviews Chemistry.
[12] W. Kaminsky,et al. Catalytic Hydroalkylation of Allenes. , 2017, Angewandte Chemie.
[13] J. Blahůt,et al. X-ray characterization of triphenylphosphine-gold(I) olefin π-complexes and the revision of their stability in solution , 2017 .
[14] Ivo Krummenacher,et al. Vom Boran zum Borylen ohne Reduktion: Ambiphiles Verhalten einer monovalenten Silylisonitril‐Borverbindung , 2017 .
[15] T. Kupfer,et al. From Borane to Borylene without Reduction: Ambiphilic Behavior of a Monovalent Silylisonitrile Boron Species. , 2017, Angewandte Chemie.
[16] H. Pellissier. Enantioselective Silver-Catalyzed Transformations. , 2016, Chemical reviews.
[17] J. Bacsa,et al. Dinuclear μ-fluoro cations of copper, silver and gold , 2014 .
[18] Xingbang Hu,et al. Gold-catalyzed hydroarylation of alkenes with dialkylanilines. , 2014, Journal of the American Chemical Society.
[19] C. Day,et al. Structure and Dynamic Behavior of Phosphine Gold(I)-Coordinated Enamines: Characterization of α-Metalated Iminium Ions , 2014 .
[20] M. Maier,et al. Mechanistic study of gold(I)-catalyzed hydroamination of alkynes: outer or inner sphere mechanism? , 2014, Angewandte Chemie.
[21] Rachel E. M. Brooner,et al. Kationische, zweifach koordinierte Gold‐π‐Komplexe , 2013 .
[22] R. Widenhoefer,et al. Cationic, two-coordinate gold π complexes. , 2013, Angewandte Chemie.
[23] David A. Ruiz,et al. Deprotonierung eines Borhydrids und Synthese eines Carben‐ stabilisierten Borylanions , 2013 .
[24] G. Bertrand,et al. Deprotonation of a borohydride: synthesis of a carbene-stabilized boryl anion. , 2013, Angewandte Chemie.
[25] G. Frenking,et al. End-on and side-on π-acid ligand adducts of gold(I): carbonyl, cyanide, isocyanide, and cyclooctyne gold(I) complexes supported by N-heterocyclic carbenes and phosphines. , 2013, Inorganic chemistry.
[26] C. Day,et al. Synthesis and Structure of Cationic Phosphine Gold(I) Enol Ether Complexes , 2012 .
[27] F. Rominger,et al. Vinylidengoldverbindungen: intermolekulare C(sp3)‐H‐Insertionen und Cyclopropanierungspfade , 2012 .
[28] F. Rominger,et al. Gold vinylidene complexes: intermolecular C(sp3)-H insertions and cyclopropanations pathways. , 2012, Angewandte Chemie.
[29] A. Börner,et al. Applied hydroformylation. , 2012, Chemical reviews.
[30] W. Goddard,et al. Two metals are better than one in the gold catalyzed oxidative heteroarylation of alkenes. , 2011, Journal of the American Chemical Society.
[31] M. Hapke,et al. Preparation and synthetic applications of alkene complexes of group 9 transition metals in [2+2+2] cycloaddition reactions. , 2011, Chemical Society reviews.
[32] C. A. Russell,et al. The interaction of gold(I) cations with 1,3-dienes. , 2011, Angewandte Chemie.
[33] A. Hashmi,et al. Heterocycles from gold catalysis. , 2011, Chemical communications.
[34] H. Schmidbaur,et al. Gold η2-Coordination to Unsaturated and Aromatic Hydrocarbons: The Key Step in Gold-Catalyzed Organic Transformations , 2010 .
[35] W. Goddard,et al. On the impact of steric and electronic properties of ligands on gold(I)-catalyzed cycloaddition reactions. , 2009, Organic letters.
[36] C. A. Russell,et al. Synthesis and structural characterisation of stable cationic gold(I) alkene complexes. , 2009, Chemical communications.
[37] R. Widenhoefer,et al. Syntheses, X-ray crystal structures, and solution behavior of monomeric, cationic, two-coordinate gold(I) pi-alkene complexes. , 2009, Journal of the American Chemical Society.
[38] Pekka Pyykkö,et al. Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.
[39] M. Yamashita,et al. Syntheses, structures, and reactivities of borylcopper and -zinc compounds: 1,4-silaboration of an alpha,beta-unsaturated ketone to form a gamma-siloxyallylborane. , 2008, Angewandte Chemie.
[40] A. Fürstner,et al. Coordination chemistry of ene-1,1-diamines and a prototype "carbodicarbene". , 2008, Angewandte Chemie.
[41] A Stephen K Hashmi,et al. Gold-catalyzed organic reactions. , 2007, Chemical reviews.
[42] F. Dean Toste,et al. Relativistic effects in homogeneous gold catalysis , 2007, Nature.
[43] Chuan He,et al. Efficient gold-catalyzed hydroamination of 1,3-dienes. , 2006, Angewandte Chemie.
[44] Junliang Zhang,et al. Gold(I)-catalyzed intra- and intermolecular hydroamination of unactivated olefins. , 2006, Journal of the American Chemical Society.
[45] G. Hutchings,et al. Gold catalysis. , 2006, Angewandte Chemie.
[46] P. Müller,et al. Efficient homogeneous catalysis in the reduction of CO2 to CO. , 2005, Journal of the American Chemical Society.
[47] Cai-Guang Yang,et al. Gold(I)-catalyzed intermolecular addition of phenols and carboxylic acids to olefins. , 2005, Journal of the American Chemical Society.
[48] Kevin S. Cook,et al. Synthesis and chemistry of zwitterionic tantala-3-boratacyclopentenes: olefin-like reactivity of a borataalkene ligand. , 2002, Journal of the American Chemical Society.
[49] Kevin S. Cook,et al. Reactions of Bis(pentafluorophenyl)borane with Cp2Ta(CH2)CH3: Generation and Trapping of Tantalocene Borataalkene Complexes , 2001 .
[50] W. Piers,et al. The Mechanism of Methane Elimination in B(C6F5)3-Initiated Monocyclopentadienyl-Ketimide Titanium and Related Olefin Polymerization Catalysts , 2000 .
[51] Kevin S. Cook,et al. Reactions of Bis(pentafluorophenyl)borane with Cp2Ta(CH2)CH3 , 1999 .
[52] N. C. Norman,et al. Transition Metal−Boryl Compounds: Synthesis, Reactivity, and Structure , 1998 .
[53] Jonathan S. Vilardo,et al. Formation and reactivity of cationic alkyl derivatives of titanium containing ortho-(1-naphthyl)phenoxide ligation , 1998 .
[54] S. Rettig,et al. Living Polymerization of α-Olefins: Catalyst Precursor Deactivation via the Unexpected Cleavage of a B−C6F5 Bond , 1997 .
[55] Qiang Xu,et al. A New Gold Catalyst: Formation of Gold(I) Carbonyl, [Au(CO)n]+ (n = 1, 2), in Sulfuric Acid and Its Application to Carbonylation of Olefins , 1997 .
[56] A. Berndt. Klassische und nichtklassische Methylenborane , 1993 .
[57] A. Berndt. Classical and Nonclassical Methyleneboranes , 1993 .
[58] P. Hofmann,et al. Contributions to the Chemistry of Boron, 210. η2‐Transition Metal Complexes of the Ligand 9‐Fluorenylidene(2,2,6,6‐tetramethylpiperidino)borane , 1992 .
[59] Gerald Linti,et al. Ein Carbonyleisen-Komplex eines Amino-9-fluorenylidenborans mit Koordination an eine Borabutadien-Einheit , 1990 .
[60] H. Nöth,et al. A Carbonyliron Complex of an Amino‐9‐fluorenylideneborane with Coordination at a Borabutadiene Unit , 1990 .
[61] H. Nöth,et al. π Complexes of an Amino-9-fluorenylideneborane†‡ , 1988 .
[62] H. Nöth,et al. π‐Komplexe eines Amino‐9‐fluorenylidenborans , 1988 .
[63] Pekka Pyykkö,et al. Relativistic effects in structural chemistry , 1988 .
[64] D. Dell'amico,et al. Olefin complexes of gold(I) by carbonyl displacement from carbonylgold(I) chloride , 1987 .
[65] P. Power,et al. Isolation and x-ray crystal structure of the boron methylidenide ion [Mes2BCH2]- (Mes = 2,4,6-Me3C6H2): a boron-carbon double bonded alkene analog , 1987 .
[66] P. Power,et al. X-ray crystal structure of the boron-stabilized carbanion [Li(12-crown-4)2][CH2C6H2(3,5-Me2)(4-B{2,4,6-Me3C6H2}2)].cntdot.Et2O: evidence for boron ylide character , 1986 .
[67] R. Hoffmann,et al. Transition-metal complexed olefins: how their reactivity toward a nucleophile relates to their electronic structure , 1981 .
[68] M. Rathke,et al. Formation and reactions of boron-stabilized carbanions derived from vinylboranes , 1973 .
[69] M. Rathke,et al. Generation of boron-stabilized carbanions , 1972 .
[70] M. A. Bennett,et al. Olefin and Acetylene Complexes of Transition Metals. , 1962 .