Group 11 Borataalkene Complexes: Models for Alkene Activation

Abstract A series of linear late transition metal (M=Cu, Ag, Au and Zn) complexes featuring a side‐on [B=C]− containing ligand have been isolated and characterised. The [B=C]− moiety is isoelectronic with the C=C system of an alkene. Comparison across the series shows that in the solid‐state, deviation between the η2 and η1 coordination mode occurs. A related zinc complex containing two [B=C]− ligands was prepared as a further point of comparison for the η1 coordination mode. The bonding in these new complexes has been interrogated by computational techniques (QTAIM, NBO, ETS‐NOCV) and rationalised in terms of the Dewar–Chatt–Duncanson model. The combined structural and computational data provide unique insight into catalytically relevant linear d10 complexes of Cu, Ag and Au. Slippage is proposed to play a key role in catalytic reactions of alkenes through disruption and polarisation of the π‐system. Through the preparation and analysis of a consistent series of group 11 complexes, we show that variation of the metal can impact the coordination mode and hence substrate activation.

[1]  A. Yadav,et al.  Gold‐Catalyzed 1,2‐Diarylation of Alkenes , 2020, Angewandte Chemie.

[2]  David J. D. Wilson,et al.  The 9-Borataphenanthrene Anion. , 2020, Angewandte Chemie.

[3]  G. Frison,et al.  Comparison of Chemical and Interpretative Methods: the Carbon-Boron π-Bond as a Test Case. , 2020, Chemistry.

[4]  David J. D. Wilson,et al.  The 9-Borataphenanthrene Anion. , 2020, Angewandte Chemie.

[5]  A. Yadav,et al.  Gold-Catalyzed 1,2-Diarylation of Alkenes. , 2020, Angewandte Chemie.

[6]  Nils Nöthling,et al.  An air-stable binary Ni(0)–olefin catalyst , 2019, Nature Catalysis.

[7]  H. Braunschweig,et al.  Facile Synthesis of a Stable Dihydroboryl {BH2 }- Anion. , 2018, Angewandte Chemie.

[8]  Ivo Krummenacher,et al.  Einfacher Zugang zum ersten stabilen {BH 2 } − Dihydroborylanion , 2018, Angewandte Chemie.

[9]  G. Frenking,et al.  Vinyltrifluoroborate Complexes of Silver Supported by N -Heterocyclic Carbenes , 2018, European Journal of Inorganic Chemistry.

[10]  Wei Lu,et al.  Coordination of Asymmetric Diborenes towards Cationic Coinage Metals (Au, Ag, Cu). , 2018, Chemistry.

[11]  P. Chirik,et al.  Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration , 2018, Nature Reviews Chemistry.

[12]  W. Kaminsky,et al.  Catalytic Hydroalkylation of Allenes. , 2017, Angewandte Chemie.

[13]  J. Blahůt,et al.  X-ray characterization of triphenylphosphine-gold(I) olefin π-complexes and the revision of their stability in solution , 2017 .

[14]  Ivo Krummenacher,et al.  Vom Boran zum Borylen ohne Reduktion: Ambiphiles Verhalten einer monovalenten Silylisonitril‐Borverbindung , 2017 .

[15]  T. Kupfer,et al.  From Borane to Borylene without Reduction: Ambiphilic Behavior of a Monovalent Silylisonitrile Boron Species. , 2017, Angewandte Chemie.

[16]  H. Pellissier Enantioselective Silver-Catalyzed Transformations. , 2016, Chemical reviews.

[17]  J. Bacsa,et al.  Dinuclear μ-fluoro cations of copper, silver and gold , 2014 .

[18]  Xingbang Hu,et al.  Gold-catalyzed hydroarylation of alkenes with dialkylanilines. , 2014, Journal of the American Chemical Society.

[19]  C. Day,et al.  Structure and Dynamic Behavior of Phosphine Gold(I)-Coordinated Enamines: Characterization of α-Metalated Iminium Ions , 2014 .

[20]  M. Maier,et al.  Mechanistic study of gold(I)-catalyzed hydroamination of alkynes: outer or inner sphere mechanism? , 2014, Angewandte Chemie.

[21]  Rachel E. M. Brooner,et al.  Kationische, zweifach koordinierte Gold‐π‐Komplexe , 2013 .

[22]  R. Widenhoefer,et al.  Cationic, two-coordinate gold π complexes. , 2013, Angewandte Chemie.

[23]  David A. Ruiz,et al.  Deprotonierung eines Borhydrids und Synthese eines Carben‐ stabilisierten Borylanions , 2013 .

[24]  G. Bertrand,et al.  Deprotonation of a borohydride: synthesis of a carbene-stabilized boryl anion. , 2013, Angewandte Chemie.

[25]  G. Frenking,et al.  End-on and side-on π-acid ligand adducts of gold(I): carbonyl, cyanide, isocyanide, and cyclooctyne gold(I) complexes supported by N-heterocyclic carbenes and phosphines. , 2013, Inorganic chemistry.

[26]  C. Day,et al.  Synthesis and Structure of Cationic Phosphine Gold(I) Enol Ether Complexes , 2012 .

[27]  F. Rominger,et al.  Vinylidengoldverbindungen: intermolekulare C(sp3)‐H‐Insertionen und Cyclopropanierungspfade , 2012 .

[28]  F. Rominger,et al.  Gold vinylidene complexes: intermolecular C(sp3)-H insertions and cyclopropanations pathways. , 2012, Angewandte Chemie.

[29]  A. Börner,et al.  Applied hydroformylation. , 2012, Chemical reviews.

[30]  W. Goddard,et al.  Two metals are better than one in the gold catalyzed oxidative heteroarylation of alkenes. , 2011, Journal of the American Chemical Society.

[31]  M. Hapke,et al.  Preparation and synthetic applications of alkene complexes of group 9 transition metals in [2+2+2] cycloaddition reactions. , 2011, Chemical Society reviews.

[32]  C. A. Russell,et al.  The interaction of gold(I) cations with 1,3-dienes. , 2011, Angewandte Chemie.

[33]  A. Hashmi,et al.  Heterocycles from gold catalysis. , 2011, Chemical communications.

[34]  H. Schmidbaur,et al.  Gold η2-Coordination to Unsaturated and Aromatic Hydrocarbons: The Key Step in Gold-Catalyzed Organic Transformations , 2010 .

[35]  W. Goddard,et al.  On the impact of steric and electronic properties of ligands on gold(I)-catalyzed cycloaddition reactions. , 2009, Organic letters.

[36]  C. A. Russell,et al.  Synthesis and structural characterisation of stable cationic gold(I) alkene complexes. , 2009, Chemical communications.

[37]  R. Widenhoefer,et al.  Syntheses, X-ray crystal structures, and solution behavior of monomeric, cationic, two-coordinate gold(I) pi-alkene complexes. , 2009, Journal of the American Chemical Society.

[38]  Pekka Pyykkö,et al.  Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.

[39]  M. Yamashita,et al.  Syntheses, structures, and reactivities of borylcopper and -zinc compounds: 1,4-silaboration of an alpha,beta-unsaturated ketone to form a gamma-siloxyallylborane. , 2008, Angewandte Chemie.

[40]  A. Fürstner,et al.  Coordination chemistry of ene-1,1-diamines and a prototype "carbodicarbene". , 2008, Angewandte Chemie.

[41]  A Stephen K Hashmi,et al.  Gold-catalyzed organic reactions. , 2007, Chemical reviews.

[42]  F. Dean Toste,et al.  Relativistic effects in homogeneous gold catalysis , 2007, Nature.

[43]  Chuan He,et al.  Efficient gold-catalyzed hydroamination of 1,3-dienes. , 2006, Angewandte Chemie.

[44]  Junliang Zhang,et al.  Gold(I)-catalyzed intra- and intermolecular hydroamination of unactivated olefins. , 2006, Journal of the American Chemical Society.

[45]  G. Hutchings,et al.  Gold catalysis. , 2006, Angewandte Chemie.

[46]  P. Müller,et al.  Efficient homogeneous catalysis in the reduction of CO2 to CO. , 2005, Journal of the American Chemical Society.

[47]  Cai-Guang Yang,et al.  Gold(I)-catalyzed intermolecular addition of phenols and carboxylic acids to olefins. , 2005, Journal of the American Chemical Society.

[48]  Kevin S. Cook,et al.  Synthesis and chemistry of zwitterionic tantala-3-boratacyclopentenes: olefin-like reactivity of a borataalkene ligand. , 2002, Journal of the American Chemical Society.

[49]  Kevin S. Cook,et al.  Reactions of Bis(pentafluorophenyl)borane with Cp2Ta(CH2)CH3: Generation and Trapping of Tantalocene Borataalkene Complexes , 2001 .

[50]  W. Piers,et al.  The Mechanism of Methane Elimination in B(C6F5)3-Initiated Monocyclopentadienyl-Ketimide Titanium and Related Olefin Polymerization Catalysts , 2000 .

[51]  Kevin S. Cook,et al.  Reactions of Bis(pentafluorophenyl)borane with Cp2Ta(CH2)CH3 , 1999 .

[52]  N. C. Norman,et al.  Transition Metal−Boryl Compounds: Synthesis, Reactivity, and Structure , 1998 .

[53]  Jonathan S. Vilardo,et al.  Formation and reactivity of cationic alkyl derivatives of titanium containing ortho-(1-naphthyl)phenoxide ligation , 1998 .

[54]  S. Rettig,et al.  Living Polymerization of α-Olefins: Catalyst Precursor Deactivation via the Unexpected Cleavage of a B−C6F5 Bond , 1997 .

[55]  Qiang Xu,et al.  A New Gold Catalyst: Formation of Gold(I) Carbonyl, [Au(CO)n]+ (n = 1, 2), in Sulfuric Acid and Its Application to Carbonylation of Olefins , 1997 .

[56]  A. Berndt Klassische und nichtklassische Methylenborane , 1993 .

[57]  A. Berndt Classical and Nonclassical Methyleneboranes , 1993 .

[58]  P. Hofmann,et al.  Contributions to the Chemistry of Boron, 210. η2‐Transition Metal Complexes of the Ligand 9‐Fluorenylidene(2,2,6,6‐tetramethylpiperidino)borane , 1992 .

[59]  Gerald Linti,et al.  Ein Carbonyleisen-Komplex eines Amino-9-fluorenylidenborans mit Koordination an eine Borabutadien-Einheit , 1990 .

[60]  H. Nöth,et al.  A Carbonyliron Complex of an Amino‐9‐fluorenylideneborane with Coordination at a Borabutadiene Unit , 1990 .

[61]  H. Nöth,et al.  π Complexes of an Amino-9-fluorenylideneborane†‡ , 1988 .

[62]  H. Nöth,et al.  π‐Komplexe eines Amino‐9‐fluorenylidenborans , 1988 .

[63]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[64]  D. Dell'amico,et al.  Olefin complexes of gold(I) by carbonyl displacement from carbonylgold(I) chloride , 1987 .

[65]  P. Power,et al.  Isolation and x-ray crystal structure of the boron methylidenide ion [Mes2BCH2]- (Mes = 2,4,6-Me3C6H2): a boron-carbon double bonded alkene analog , 1987 .

[66]  P. Power,et al.  X-ray crystal structure of the boron-stabilized carbanion [Li(12-crown-4)2][CH2C6H2(3,5-Me2)(4-B{2,4,6-Me3C6H2}2)].cntdot.Et2O: evidence for boron ylide character , 1986 .

[67]  R. Hoffmann,et al.  Transition-metal complexed olefins: how their reactivity toward a nucleophile relates to their electronic structure , 1981 .

[68]  M. Rathke,et al.  Formation and reactions of boron-stabilized carbanions derived from vinylboranes , 1973 .

[69]  M. Rathke,et al.  Generation of boron-stabilized carbanions , 1972 .

[70]  M. A. Bennett,et al.  Olefin and Acetylene Complexes of Transition Metals. , 1962 .