Object tracking with hierarchical multiview learning

Abstract. Building a robust appearance model is useful to improve tracking performance. We propose a hierarchical multiview learning framework to construct the appearance model, which has two layers for tracking. On the top layer, two different views of features, grayscale value and histogram of oriented gradients, are adopted for representation under the cotraining framework. On the bottom layer, for each view of each feature, three different random subspaces are generated to represent the appearance from multiple views. For each random view submodel, the least squares support vector machine is employed to improve the discriminability for concrete and efficient realization. These two layers are combined to construct the final appearance model for tracking. The proposed hierarchical model assembles two types of multiview learning strategies, in which the appearance can be described more accurately and robustly. Experimental results in the benchmark dataset demonstrate that the proposed method can achieve better performance than many existing state-of-the-art algorithms.

[1]  Shiqian Wu,et al.  Object tracking based on bit-planes , 2016, J. Electronic Imaging.

[2]  Horst Bischof,et al.  On-Line Multi-view Forests for Tracking , 2010, DAGM-Symposium.

[3]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Shiliang Sun,et al.  A survey of multi-view machine learning , 2013, Neural Computing and Applications.

[5]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[6]  Thomas Serre,et al.  Hierarchical classification and feature reduction for fast face detection with support vector machines , 2003, Pattern Recognit..

[7]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[8]  Qi Zhao,et al.  Co-Tracking Using Semi-Supervised Support Vector Machines , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[9]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[10]  Xin Yu,et al.  Object Tracking With Multi-View Support Vector Machines , 2015, IEEE Transactions on Multimedia.

[11]  Zhibin Hong,et al.  Tracking via Robust Multi-task Multi-view Joint Sparse Representation , 2013, 2013 IEEE International Conference on Computer Vision.

[12]  Claire Cardie,et al.  Limitations of Co-Training for Natural Language Learning from Large Datasets , 2001, EMNLP.

[13]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[14]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[15]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[17]  Hanzi Wang,et al.  Incremental Learning of 3D-DCT Compact Representations for Robust Visual Tracking , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[19]  Ju-Chin Chen,et al.  Accurate object tracking system by integrating texture and depth cues , 2016, J. Electronic Imaging.

[20]  Zhi-Hua Zhou,et al.  Semi-Supervised Regression with Co-Training , 2005, IJCAI.

[21]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[22]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[23]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[24]  Narendra Ahuja,et al.  Robust Visual Tracking Via Consistent Low-Rank Sparse Learning , 2014, International Journal of Computer Vision.

[25]  Hal Daumé,et al.  A Co-training Approach for Multi-view Spectral Clustering , 2011, ICML.

[26]  Dacheng Tao,et al.  A Survey on Multi-view Learning , 2013, ArXiv.

[27]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[28]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[29]  Junzhou Huang,et al.  Robust Visual Tracking Using Local Sparse Appearance Model and K-Selection , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Basilio Sierra,et al.  Classifier hierarchy learning by means of genetic algorithms , 2006, Pattern Recognit. Lett..

[31]  Gabriele Moser,et al.  Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model , 2013, IEEE Geoscience and Remote Sensing Letters.

[32]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  Huchuan Lu,et al.  Multi-feature tracking via adaptive weights , 2016, Neurocomputing.

[36]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Jieping Ye,et al.  SVM versus Least Squares SVM , 2007, AISTATS.

[39]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[40]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[41]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Hanqing Lu,et al.  A robust boosting tracker with minimum error bound in a co-training framework , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[43]  Johan A. K. Suykens,et al.  Benchmarking Least Squares Support Vector Machine Classifiers , 2004, Machine Learning.

[44]  Li Zhang,et al.  Robust Tracking via Locally Structured Representation , 2016, International Journal of Computer Vision.

[45]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[46]  周鑫,et al.  Tracking-learning-detection (TLD)-based video object tracking method , 2012 .

[47]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.