A review of adaptive population sizing schemes in genetic algorithms

This paper reviews the topic of population sizing in genetic algorithms. It starts by revisiting theoretical models which rely on a facetwise decomposition of genetic algorithms, and then moves on to various self-adjusting population sizing schemes that have been proposed in the literature. The paper ends with recommendations for those who design and compare adaptive population sizing schemes for genetic algorithms.

[1]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[2]  Heinz Mühlenbein,et al.  Strategy Adaption by Competing Subpopulations , 1994, PPSN.

[3]  David E. Goldberg,et al.  Genetic Algorithms and the Variance of Fitness , 1991, Complex Syst..

[4]  Cláudio F. Lima,et al.  Parameter-Less Optimization with the Extended Compact Genetic Algorithm and Iterated Local Search , 2004, GECCO.

[5]  Martin Pelikan,et al.  Parameter-Less Hierarchical BOA , 2004, GECCO.

[6]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[7]  Robert E. Smith,et al.  Adaptively Resizing Populations: An Algorithm and Analysis , 1993, ICGA.

[8]  Zbigniew Michalewicz,et al.  GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[9]  D. Goldberg,et al.  Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[10]  David E. Goldberg,et al.  Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..

[11]  John H. Holland,et al.  Genetic Algorithms and the Optimal Allocation of Trials , 1973, SIAM J. Comput..

[12]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[13]  Heinz Mühlenbein,et al.  Adaptation of population sizes by competing subpopulations , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[14]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[15]  Elena Marchiori,et al.  Evolutionary Algorithms with On-the-Fly Population Size Adjustment , 2004, PPSN.

[16]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[17]  David E. Goldberg,et al.  Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence , 2000, GECCO.

[18]  Zbigniew Michalewicz,et al.  Self-Adaptive Genetic Algorithm for Numeric Functions , 1996, PPSN.

[19]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[20]  David E. Goldberg,et al.  Time Complexity of genetic algorithms on exponentially scaled problems , 2000, GECCO.

[21]  Robert E. Smith,et al.  Adaptively Resizing Populations: Algorithm, Analysis, and First Results , 1993, Complex Syst..

[22]  Thomas Bäck,et al.  An Empirical Study on GAs "Without Parameters" , 2000, PPSN.

[23]  Martin Pelikan,et al.  Parameter-less Genetic Algorithm: A Worst-case Time and Space Complexity Analysis , 2000, GECCO.

[24]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .