Solid-solution solubilities and thermodynamics: Sulfates, carbonates and halides

This review updates and expands an earlier study (Glynn 1990), that is presently out of print. The principal objectives of this chapter are (1) to review the thermodynamic theory of solid-solution aqueous-solution interactions, particularly as it pertains to low-temperature systems (between 0 and 100°C), and (2) to summarize available data on the effects of ionic substitutions on the thermodynamic properties of binary sulfate solid-solutions. Selected carbonate and halide solid-solutions are also considered. Studies of solid-solution aqueous-solution (SSAS) systems commonly focus on measuring the partitioning of trace components between solid and aqueous phases. The effect of solid-solution formation on mineral solubilities in aqueous media is rarely investigated. Several studies, however, have examined the thermodynamics of SSAS systems, describing theoretical and experimental aspects of solid-solution dissolution and component-distribution reactions (Lippmann 1977, 1980; Thorstenson and Plummer 1977, Plummer and Busenberg 1987, Glynn and Reardon 1990, 1992; Glynn et al. 1990, 1992; Glynn 1991, 1992; Glynn and Parkhurst 1992, Konigsberger and Gamsjager 1991, 1992; Gamjager et al. 2000). The present chapter describes and compares some of the concepts presented by the above authors, and presents methods that can be used to estimate the effect of SSAS reactions on the chemical evolution of natural waters. Sulfate minerals are particularly well suited for the investigation of the thermodynamics of SSAS systems, because their generally high solubilities facilitate the attainment of thermodynamic equilibrium states and their commonly large crystal structures tend to allow considerable ionic substitution. Field or laboratory observations of miscibility gaps, spinodal gaps, critical mixing points, or distribution coefficients can be used to estimate solid-solution excess-free-energies, which are needed for the calculation of solid-solution solubilities and of potential component-partitioning behavior. Experimental measurements of the solubility and thermodynamic properties of solid solutions are …

[1]  R. Stoffregen,et al.  An experimental study of Na-K exchange between alunite and aqueous sulfate solutions , 1990 .

[2]  M. Sheridan,et al.  Sulfate studies IV: the jarosite—natrojarosite— hydronium jarosite solid solution series , 1965 .

[3]  David L. Parkhurst,et al.  A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines , 1988 .

[4]  L. N. Plummer,et al.  Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure , 1989 .

[5]  E. Königsberger,et al.  Lippmann Diagrams: Theory and Application to Carbonate Systems , 2000 .

[6]  L. N. Plummer,et al.  Reply to Dr. Stoesselfs Comment on “Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems” , 1992 .

[7]  Joel H. Hildebrand,et al.  Solubility of Non-Electrolytes , 1936, Nature.

[8]  Fouad Souissi,et al.  Sur le caractère non-idéal des solutions solides (Ba,Sr)SO4: mise en évidence et détermination des paramètres thermodynamiques par des essais de dissolution à 25°C , 1989 .

[9]  L. N. Plummer,et al.  Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems , 1990 .

[10]  C. Fuller,et al.  A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation , 1987 .

[11]  A. White The System Ferrous Sulfate—Manganous Sulfate—Water at 0 and 25° , 1933 .

[12]  C. Guillemin Dana's system of mineralogy, vol. II, C. Palache, H. Berman et G. Frondel, 1951 , 1952 .

[13]  J. Denis,et al.  Dissolution d'une solution solide : étude théorique et expérimentale , 1983 .

[14]  E. Königsberger,et al.  Solid-solution aqueous-solution equilibria; thermodynamic theory and representation; discussion and reply , 1992 .

[15]  A. Putnis,et al.  Computing Lippmann Diagrams from Direct Calculation of Mixing Properties of Solid Solutions: Application to the Barite-Celestite System , 2000 .

[16]  S. Saxena,et al.  Mixtures and mineral reactions , 1987 .

[17]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[18]  L. N. Plummer,et al.  The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O , 1982 .

[19]  G. Boyd,et al.  Thermodynamics of Coprecipitation: Dilute Solid Solutions of AgBr in AgCl1 , 1952 .

[20]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[21]  L. N. Plummer,et al.  Thermodynamics of aragonite-strontianite solid solutions: Results from stoichiometric solubility at 25 and 76°C , 1987 .

[22]  John Arents,et al.  Thermodynamics of solids , 1962 .

[23]  P. Glynn,et al.  Solid-solution aqueous-solution equilibria; thermodynamic theory and representation , 1990 .

[24]  P. Glynn Modeling solid-solution reactions in low-temperature aqueous systems , 1990 .

[25]  A. Mucci Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater , 1987 .

[26]  V. Urusov Energetic criteria for solid solution miscibility gap calculations , 1974 .

[27]  D. Ives,et al.  Structure of aqueous electrolyte solutions and the hydration of ions , 1965 .

[28]  E. A. Guggenheim The theoretical basis of Raoult's law , 1937 .

[29]  Mark S. Ghiorso,et al.  Thermodynamic properties of hematite — ilmenite — geikielite solid solutions , 1990 .

[30]  S. Basu,et al.  A discussion of Margules-type formulations for multicomponent solutions with a generalized approach , 1993 .

[31]  R. Stoffregen Stability relations of jarosite and natrojarosite at 150–250°C , 1993 .

[32]  E. Königsberger,et al.  Solid-solute phase equilibria in aqueous solution. V: The system CdCO3-CaCO3-CO2-H2O , 1991 .

[33]  D. Thorstenson,et al.  Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase; example, the magnesian calcites , 1977 .

[34]  M. Ghiorso,et al.  Thermodynamics of multicomponent pyroxenes: I. Formulation of a general model , 1994 .

[35]  E. Königsberger,et al.  Graphical Representation of Solid‐Solute Phase Equilibria in Aqueous Solution , 1991 .

[36]  P. Glynn MBSSAS: a code for the computation of Margules parameters and equilibrium relations in binary solid-solution aqueous-solution systems , 1991 .

[37]  A. Felmy,et al.  The solubility of (Ba,Sr)SO4 precipitates: Thermodynamic equilibrium and reaction path analysis , 1993 .

[38]  R. Garrels,et al.  Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase; example, the magnesian calcites; discussion , 1978 .

[39]  James B. Thompson,et al.  Analysis of the two-phase region halite-sylvite in the system NaClKCl , 1969 .

[40]  Mark S. Ghiorso,et al.  Algorithms for the estimation of phase stability in heterogeneous thermodynamic systems , 1994 .

[41]  P. Brand,et al.  Fe−Al-Isomorphie und Strukturwasser in Kristallen vom Jarosit-Alunit-Typ , 1984 .

[42]  J. W. Winchester,et al.  Coprecipitation of zinc with calcium carbonate , 1966 .

[43]  W. Schroeder,et al.  Solubility Equilibria of Sodium Sulfate at Temperatures from 150 to 350°.1 III. Effect of Sodium Hydroxide and Sodium Phosphate , 1935 .

[44]  Solid-solute phase equilibria in aqueous solution , 1989 .

[45]  D. Baron Iron-chromate precipitates in CR(VI)-contaminated soils identification, solubility, and solid solution/aqueous solution reactions , 1996 .

[46]  E. Königsberger,et al.  Solid-solute phase equilibria in aqueous solution. III. A new application of an old chemical potentiometer , 1990 .

[47]  S. Saxena Thermodynamics of Rock-Forming Crystalline Solutions , 1973 .