A mixed finite element method for a nonlinear Dirichlet problem
暂无分享,去创建一个
[1] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[2] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[3] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[4] D. Sandri,et al. Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .
[5] John W. Barrett,et al. Finite element approximation of some degenerate monotone quasilinear elliptic systems , 1996 .
[6] Jacques Baranger,et al. Numerical analysis of a three-fields model for a quasi-Newtonian flow , 1993 .
[7] John W. Barrett,et al. Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear parabolic equations and variational inequalities , 1995 .
[8] John W. Barrett,et al. Finite element approximation of the p-Laplacian , 1993 .
[9] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[10] J. Baranger,et al. Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .
[11] John W. Barrett,et al. Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities , 1994 .
[12] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .