A mixed finite element method for a nonlinear Dirichlet problem

We study a mixed finite element approximation of a nonlinear Dirichlet problem in both two and three dimensions. This study is a first step towards the treatment of Ladyzhenskaya flows or quasi-Newtonian flows obeying the power law by mixed finite element methods. We give existence and uniqueness results for the continuous problem and its approximation and we prove an error bound.

[1]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[2]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[3]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[4]  D. Sandri,et al.  Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .

[5]  John W. Barrett,et al.  Finite element approximation of some degenerate monotone quasilinear elliptic systems , 1996 .

[6]  Jacques Baranger,et al.  Numerical analysis of a three-fields model for a quasi-Newtonian flow , 1993 .

[7]  John W. Barrett,et al.  Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear parabolic equations and variational inequalities , 1995 .

[8]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[9]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[10]  J. Baranger,et al.  Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .

[11]  John W. Barrett,et al.  Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities , 1994 .

[12]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .