Unraveling the effect of CDI electrode characteristics on Cs removal from the perspective of ion transfer and energy composition.

[1]  V. Presser,et al.  Selectivity toward heavier monovalent cations of carbon ultramicropores used for capacitive deionization , 2022, Desalination.

[2]  Mansoo Choi,et al.  Electrosorption Removal of Cesium Ions with a Copper Hexacyanoferrate Electrode in a Capacitive Deionization (CDI) System , 2022, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[3]  Xiaoying Huang,et al.  Rapid and selective removal of Cs+ and Sr2+ ions by two zeolite-type sulfides via ion exchange method , 2022, Chemical Engineering Journal.

[4]  Huancong Shi,et al.  Molecular understanding of aqueous electrolyte properties and dielectric effect in a CDI system , 2022, Chemical Engineering Journal.

[5]  A. Grandjean,et al.  Influence of the Nb content and microstructure of sitinakite-type crystalline silicotitanates (CSTs) on their Sr2+ and Cs+ sorption properties , 2021 .

[6]  Longqian Xu,et al.  Insight into electrosorption behavior of monovalent ions and their selectivity in capacitive deionization: An atomic level study by molecular dynamics simulation , 2021, Chemical Engineering Journal.

[7]  P. M. Biesheuvel,et al.  Recent advances in ion selectivity with capacitive deionization , 2021, Energy & Environmental Science.

[8]  Y. Kawai,et al.  Selective adsorption of monovalent cations in porous electrodes. , 2020, Physical chemistry chemical physics : PCCP.

[9]  M. Shenashen,et al.  Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. , 2020, Chemosphere.

[10]  A. Noy,et al.  Understanding Cation Selectivity in Carbon Nanopores with Hybrid First-Principles/Continuum Simulations: Implications for Water Desalination and Separation Technologies , 2020 .

[11]  Qi Wang,et al.  Coal-based ultrathin-wall graphitic porous carbon for high-performance form-stable phase change materials with enhanced thermal conductivity , 2020, Chemical Engineering Journal.

[12]  Li Wang,et al.  Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening. , 2019, Environmental science & technology.

[13]  P. M. Biesheuvel,et al.  Timeline on the application of intercalation materials in Capacitive Deionization , 2019, Desalination.

[14]  Li Wang,et al.  Energy Efficiency of Capacitive Deionization. , 2019, Environmental science & technology.

[15]  Ho Kyong Shon,et al.  Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency , 2019, Desalination.

[16]  Lin Chen,et al.  Energy recovery and electrode regeneration under different charge/discharge conditions in membrane capacitive deionization , 2018, Desalination.

[17]  V. Presser,et al.  Potential-Dependent, Switchable Ion Selectivity in Aqueous Media Using Titanium Disulfide. , 2018, ChemSusChem.

[18]  Li Wang,et al.  Membrane Capacitive Deionization with Constant Current vs Constant Voltage Charging: Which Is Better? , 2018, Environmental science & technology.

[19]  Yuping Li,et al.  Macropore- and Micropore-Dominated Carbon Derived from Poly(vinyl alcohol) and Polyvinylpyrrolidone for Supercapacitor and Capacitive Deionization , 2017 .

[20]  Michael Stadermann,et al.  Energy breakdown in capacitive deionization. , 2016, Water research.

[21]  Juan G. Santiago,et al.  Two-Dimensional Porous Electrode Model for Capacitive Deionization , 2015 .

[22]  P. M. Biesheuvel,et al.  Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage. , 2015, Journal of colloid and interface science.

[23]  Shubin Yang,et al.  Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. , 2014, Journal of hazardous materials.

[24]  Heidelberg,et al.  Attractive forces in microporous carbon electrodes for capacitive deionization , 2013, Journal of Solid State Electrochemistry.

[25]  Karel J. Keesman,et al.  Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization , 2013 .

[26]  Volker Presser,et al.  Review on the science and technology of water desalination by capacitive deionization , 2013 .

[27]  P. Długołęcki,et al.  Energy recovery in membrane capacitive deionization. , 2013, Environmental science & technology.

[28]  Chao Pan,et al.  Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization , 2012 .

[29]  P. M. Biesheuvel,et al.  Water desalination using capacitive deionization with microporous carbon electrodes. , 2012, ACS applied materials & interfaces.

[30]  P. M. Biesheuvel,et al.  Theory of membrane capacitive deionization including the effect of the electrode pore space. , 2011, Journal of colloid and interface science.

[31]  Jinhui Peng,et al.  Preparation of high surface area activated carbon from coconut shells using microwave heating. , 2010, Bioresource technology.

[32]  P. M. Biesheuvel,et al.  Nonlinear dynamics of capacitive charging and desalination by porous electrodes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Martin Z. Bazant,et al.  Imposed currents in galvanic cells , 2009 .

[34]  Thomas F. Fuller,et al.  Modeling and Investigation of Design Factors and Their Impact on Carbon Corrosion of PEMFC Electrodes , 2008 .

[35]  Robert M. Darling,et al.  Model of Carbon Corrosion in PEM Fuel Cells , 2006 .

[36]  C. F. Schutte,et al.  Capacitive Deionization Technology™: An alternative desalination solution , 2005 .

[37]  Wangwang Tang,et al.  Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. , 2018, Water research.

[38]  Xin Gao,et al.  Impact of Pore Size Characteristics on the Electrosorption Capacity of Carbon Xerogel Electrodes for Capacitive Deionization , 2012 .

[39]  F. Herrmann,et al.  Analogy between mechanics and electricity , 1985 .