Duality between Lagrangian and Legendrian invariants

Consider a pair $(X,L)$, of a Weinstein manifold $X$ with an exact Lagrangian submanifold $L$, with ideal contact boundary $(Y,\Lambda)$, where $Y$ is a contact manifold and $\Lambda\subset Y$ is a Legendrian submanifold. We introduce the Chekanov-Eliashberg DG-algebra, $CE^{\ast}(\Lambda)$, with coefficients in chains of the based loop space of $\Lambda$ and study its relation to the Floer cohomology $CF^{\ast}(L)$ of $L$. Using the augmentation induced by $L$, $CE^{\ast}(\Lambda)$ can be expressed as the Adams cobar construction $\Omega$ applied to a Legendrian coalgebra, $LC_{\ast}(\Lambda)$. We define a twisting cochain:\[\mathfrak{t} \colon LC_{\ast}(\Lambda) \to \mathrm{B} (CF^*(L))^\#\]via holomorphic curve counts, where $\mathrm{B}$ denotes the bar construction and $\#$ the graded linear dual. We show under simply-connectedness assumptions that the corresponding Koszul complex is acyclic which then implies that $CE^*(\Lambda)$ and $CF^{\ast}(L)$ are Koszul dual. In particular, $\mathfrak{t}$ induces a quasi-isomorphism between $CE^*(\Lambda)$ and the cobar of the Floer homology of $L$, $\Omega CF_*(L)$. We use the duality result to show that under certain connectivity and locally finiteness assumptions, $CE^*(\Lambda)$ is quasi-isomorphic to $C_{-*}(\Omega L)$ for any Lagrangian filling $L$ of $\Lambda$. Our constructions have interpretations in terms of wrapped Floer cohomology after versions of Lagrangian handle attachments. In particular, we outline a proof that $CE^{\ast}(\Lambda)$ is quasi-isomorphic to the wrapped Floer cohomology of a fiber disk $C$ in the Weinstein domain obtained by attaching $T^{\ast}(\Lambda\times[0,\infty))$ to $X$ along $\Lambda$ (or, in the terminology of arXiv:1604.02540 the wrapped Floer cohomology of $C$ in $X$ with wrapping stopped by $\Lambda$). Along the way, we give a definition of wrapped Floer cohomology without Hamiltonian perturbations.

[1]  Roger Casals,et al.  Legendrian fronts for affine varieties , 2016, Duke Mathematical Journal.

[2]  Zachary Sylvan On partially wrapped Fukaya categories , 2016, Journal of Topology.

[3]  J. Neisendorfer What is loop multiplication anyhow? , 2017 .

[4]  D. Nadler Wrapped microlocal sheaves on pairs of pants , 2016, 1604.00114.

[5]  A. Polishchuk,et al.  Arithmetic mirror symmetry for genus 1 curves with n marked points , 2016, 1601.06141.

[6]  J. Pardon An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves , 2013, 1309.2370.

[7]  Dong Yang,et al.  Relative singularity categories I: Auslander resolutions , 2012, 1205.1008.

[8]  K. Honda,et al.  Semi-global Kuranishi charts and the definition of contact homology , 2015, 1512.00580.

[9]  T. Ekholm,et al.  Symplectic and contact differential graded algebras , 2015, 1506.01078.

[10]  Tolga Etgu,et al.  Koszul duality patterns in Floer theory , 2015, 1502.07922.

[11]  E. Herscovich Hochschild (co)homology and Koszul duality , 2014, 1405.2247.

[12]  John B. Etnyre,et al.  Knot contact homology , 2011, 1109.1542.

[13]  T. Ekholm,et al.  Legendrian knots and exact Lagrangian cobordisms , 2012, 1212.1519.

[14]  T. Ekholm,et al.  Exact Lagrangian immersions with one double point revisited , 2012, 1211.1715.

[15]  Baptiste Chantraine,et al.  Bilinearised Legendrian contact homology and the augmentation category , 2012, 1210.7367.

[16]  Y. Oh,et al.  Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I , 2010 .

[17]  Paul J. Koprowski,et al.  Product structures for Legendrian contact homology , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  T. Ekholm,et al.  Effect of Legendrian surgery , 2009, 0911.0026.

[19]  Miguel Abreu,et al.  New Perspectives and Challenges in Symplectic Field Theory , 2009 .

[20]  M. Abouzaid On the wrapped Fukaya category and based loops , 2009, 0907.5606.

[21]  L. Positselski Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence , 2009, 0905.2621.

[22]  J. Latschev,et al.  Compactness for holomorphic curves with switching Lagrangian boundary conditions , 2009, 0903.2200.

[23]  Y. Oh,et al.  Lagrangian intersection floer theory : anomaly and obstruction , 2009 .

[24]  Paul G. Goerss,et al.  Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.

[25]  Paul Seidel,et al.  Fukaya Categories and Picard-Lefschetz Theory , 2008 .

[26]  John B. Etnyre,et al.  A Duality Exact Sequence for Legendrian Contact Homology , 2008, 0803.2455.

[27]  P. Seidel,et al.  An open string analogue of Viterbo functoriality , 2007, 0712.3177.

[28]  Goncalo Tabuada Théorie homotopique des DG-catégories , 2007, 0710.4303.

[29]  John B. Etnyre,et al.  Legendrian contact homology in $P \times \mathbb{R}$ , 2007 .

[30]  J. Latschev,et al.  The role of string topology in symplectic field theory , 2007, 0706.3284.

[31]  T. Ekholm Morse flow trees and Legendrian contact homology in 1-jet spaces , 2005, math/0509386.

[32]  T. Ekholm Rational symplectic field theory over Z2 for exact Lagrangian cobordisms , 2006, math/0612029.

[33]  M. Abouzaid Morse homology, tropical geometry, and homological mirror symmetry for toric varieties , 2006, math/0610004.

[34]  F. Lalonde,et al.  Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology , 2006 .

[35]  H. Hofer A General Fredholm Theory and Applications , 2005, math/0509366.

[36]  John B. Etnyre,et al.  ORIENTATIONS IN LEGENDRIAN CONTACT HOMOLOGY AND EXACT LAGRANGIAN IMMERSIONS , 2004, math/0408411.

[37]  O. Cornea,et al.  LAGRANGIAN INTERSECTIONS AND THE SERRE SPECTRAL SEQUENCE , 2004, math/0401094.

[38]  E. Zehnder,et al.  Compactness results in Symplectic Field Theory , 2003, math/0308183.

[39]  Jean-Pierre Serre,et al.  Homologie singulière des espaces fibrés. Applications , 2003 .

[40]  D. Diderot,et al.  Sur les A ∞ -categories , 2003 .

[41]  V. Drinfeld DG quotients of DG categories , 2002, math/0210114.

[42]  B. Shipley,et al.  Equivalences of monoidal model categories , 2002, math/0209342.

[43]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[44]  J. M. Boardman Conditionally Convergent Spectral Sequences , 1999 .

[45]  Y. Oh,et al.  Zero-loop open strings in the cotangent bundle and Morse homotopy , 1997 .

[46]  Wolfgang Soergel,et al.  Koszul Duality Patterns in Representation Theory , 1996 .

[47]  Gunnar E. Carlsson,et al.  CHAPTER 13 – Stable Homotopy and Iterated Loop Spaces , 1995 .

[48]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[49]  Y. Félix,et al.  Extended Adams-Hilton’s construction , 1987 .

[50]  John D. S. Jones Cyclic homology and equivariant homology , 1987 .

[51]  John McCleary,et al.  User's Guide to Spectral Sequences , 1985 .

[52]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[53]  S. Eilenberg,et al.  Limits and spectral sequences , 1962 .

[54]  Edgar H. Brown,et al.  Twisted Tensor Products, I , 1959 .

[55]  J. Adams,et al.  On the chain algebra of a loop space , 1956 .

[56]  J. Adams,et al.  ON THE COBAR CONSTRUCTION. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. M. Kan ABSTRACT HOMOTOPY. IV. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[58]  D. M. Kan,et al.  ABSTRACT HOMOTOPY. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Jean-Pierre Serre,et al.  Homologie Singuliere Des Espaces Fibres , 1951 .