Theoretical and experimental study of the overdense plasma generation in a miniaturized microwave ion source

To understand the plasma evolution mechanism of microwave ion source (MIS), a hybrid discharge heating (HDH) mode is proposed. That mode contains two parts: ignition discharge by surface wave plasma (SWP) and ionization by electron cyclotron resonance. Compared with the traditional electron cyclotron heating (ECH) mode, the HDH mode has a wider scope of application for MIS with a chamber diameter smaller than the cutoff size. The spatio-temporal evolution of electric field, power deposition, electron temperature, and electron density of a miniaturized microwave ion source (MMIS) at Peking University is investigated based on the HDH mode. In addition, the MMIS is optimized based on the theoretical results of the HDH mechanism. Preliminary experiments show that a mixed hydrogen continuous wave beam of up to 25 mA at 30 keV can be extracted with a power efficiency of 25 mA/100 W.

[1]  Xiaobing Zhang,et al.  Modeling of plasma density, argon ion energy and ion velocity functions in a dipolar electron cyclotron resonance plasma source , 2020 .

[2]  S. Bhoraskar,et al.  Surface modification of UHMWPE using ECR plasma for osteoblast and osteoclast differentiation , 2020 .

[3]  Wenbin Wu,et al.  A miniaturized ECR plasma flood gun for wafer charge neutralization. , 2020, The Review of scientific instruments.

[4]  Wenbin Wu,et al.  Possibility of generating H+, or H2 +, or H3 + dominated ion beams with a 2.45 GHz permanent magnet ECR ion source. , 2019, The Review of scientific instruments.

[5]  R. Heidinger,et al.  Deuteron beam commissioning of the linear IFMIF prototype accelerator ion source and low energy beam transport , 2019, Nuclear Fusion.

[6]  M. Bandyopadhyay,et al.  Spatio-temporal evolution of electric field inside a microwave discharge plasma during initial phase of ignition and its effect on power coupling , 2018, Physics of Plasmas.

[7]  S. Bogomolov,et al.  Development of compact 2.45 GHz ECR ion source for generation of singly charged ions , 2018, Journal of Instrumentation.

[8]  J. Chen,et al.  Optical emission spectroscopy for plasma diagnosis of 2.45 GHz ECR ion source at Peking University , 2018 .

[9]  Wenbin Wu,et al.  A miniaturized 2.45 GHz ECR ion source at Peking University , 2018 .

[10]  Santo Gammino,et al.  Overdense plasma generation in a compact ion source , 2017 .

[11]  J. Chen,et al.  New progress on beam availability and reliability of PKU high intensity CW proton ECR ion source , 2017 .

[12]  T. Zhang 张,et al.  Analysis of the primary experimental results on a 5 cm diameter ECR ion thruster , 2017 .

[13]  D. Mansfeld,et al.  Kinetic instabilities in a mirror-confined plasma sustained by high-power microwave radiation , 2016, 1612.00695.

[14]  H. Kousaka,et al.  Microwave power coupling in a surface wave excited plasma , 2014, 1411.3072.

[15]  T. Tokoroyama,et al.  Thermal Stability and High-Temperature Tribological Properties of a-C:H and Si-DLC Deposited by Microwave Sheath Voltage Combination Plasma , 2013 .

[16]  D. L. Williams,et al.  High yield neutron generators using the DD reaction , 2013 .

[17]  A. Sidorov,et al.  Physical principles of the preglow effect and scaling of its basic parameters for electron cyclotron resonance sources of multicharged ions , 2012 .

[18]  A. Kitagawa,et al.  A review of ion sources for medical accelerators (invited). , 2012, The Review of scientific instruments.

[19]  Q. Ji Compact Permanent Magnet Microwave‐Driven Neutron Generator , 2011 .

[20]  D. Goetz,et al.  A compact electron cyclotron resonance proton source for the Paul Scherrer Institute's proton accelerator facility. , 2011, The Review of scientific instruments.

[21]  L Celona,et al.  Review on high current 2.45 GHz electron cyclotron resonance sources (invited). , 2010, The Review of scientific instruments.

[22]  T. Ropponen,et al.  The role of seed electrons on the plasma breakdown and preglow of electron cyclotron resonance ion source. , 2010, The Review of scientific instruments.

[23]  M. Ishihara,et al.  Large-area surface wave plasmas using microwave multi-slot antennas for nanocrystalline diamond film deposition , 2010 .

[24]  Liu Ming-hai,et al.  A Novel Structure of Slot-Antenna Array for Producing Large-Area Planar Surface-Wave Plasmas , 2008 .

[25]  Naoji Yamamoto,et al.  Effects of Magnetic Field Configuration on Thrust Performance in A Miniature Microwave Discharge Ion Thruster , 2007 .

[26]  Tao Huang,et al.  Simulation of electron distribution features in the ionization process of an electron cyclotron resonance discharge , 2007 .

[27]  K. Akhtar,et al.  Absorption of high-frequency guided waves in a plasma-loaded waveguide , 2007 .

[28]  Naoji Yamamoto,et al.  Magnetic Field Design in Miniature Microwave Discharge Ion Engines , 2006 .

[29]  J. M. Pitarke,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2006, cond-mat/0611257.

[30]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[31]  Kouichi Ono,et al.  Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source , 2003 .

[32]  S. Bousson,et al.  High intensity ECR ion source (H+, D+, H−) developments at CEA/Saclay , 2002 .

[33]  H. Sugai,et al.  Transition of electron heating mode in a planar microwave discharge at low pressures , 2000 .

[34]  M. Nagatsu,et al.  Effect of slot antenna structures on production of large-area planar surface wave plasmas excited at 2.45 GHz , 2000 .

[35]  N. Sakudo Microwave ion sources for industrial applications (invited) , 2000 .

[36]  L. Celona,et al.  Study of microwave coupling in electron cyclotron resonance ion sources and microwave ion sources , 1998 .

[37]  R. D. Tarey,et al.  Theory of high-frequency guided waves in a plasma-loaded waveguide , 1998 .

[38]  R Geller,et al.  Electron Cyclotron Resonance Ion Sources and ECR Plasmas , 2018 .

[39]  M. Moisan,et al.  Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface‐wave‐sustained discharge at atmospheric pressure , 1996 .

[40]  M. Shimada,et al.  Advanced high‐current ECR ion sources for implanters , 1992 .

[41]  M. Shimada,et al.  Compact electron cyclotron resonance ion source with high density plasma , 1991 .

[42]  O. Popov Electron cyclotron resonance plasmas excited by rectangular and circular microwave modes , 1990 .

[43]  O. A. Popov,et al.  Characteristics of electron cyclotron resonance plasma sources , 1989 .