Characterization of a karstic aquifer using magnetic resonance sounding and electrical resistivity tomography: a case-study of Estaña Lakes (northern Spain)

The geophysical characterization of a previously unstudied endorheic karstic system is presented. The studied area, known as the Estaña Lakes, is located in the Pyrenean Marginal Sierras, northern Spain. The Estaña Lakes are a set of natural water ponds on a bedrock of Triassic evaporites, lutites and carbonates. This wetland is included in the Natura 2000 European network of nature protection areas as a “Site of Community Importance”. Two geophysical techniques were used, magnetic resonance sounding (MRS) and electrical resistivity tomography (ERT), to map the subsurface geology and characterize the aquifer layers and the hydraulic links between the aquifers and lakes. The geophysical data were integrated with the surface geology and data from six boreholes. Ten electrical profiles were performed to identify the thickness of the units and lithological changes, whereas the MRS was used to determine the top of the saturated zone. As result, the aquifer in the Estaña Lakes system and surrounding area has been identified as Middle Triassic carbonates, which does not correspond with the regional aquifer in the area (Upper Cretaceous and Eocene). This work shows the power of geophysical methods in poorly understood and tectonically complex areas in addition to the standard aquifer tests to evaluate hydraulic properties.RésuméLa caractérisation géophysique d’un système karstique endoréïque, non étudié antérieurement, est présentée. La région examinée, connue comme région des Lacs d’Estaña, est située dans les Sierras Marginales des Pyrénées, Espagne du Nord. Les Lacs d’Estaña forment un ensemble de plans d’eau naturels, sur un substrat d’évaporites, de lutites et de roches carbonatées du Trias. Cette zone humide est incluse dans le réseau européen des sites de protection de la nature Natura 2000, en tant que « Site d’importance communautaire ». Deux techniques géophysiques ont été utilisées, le sondage par résonance magnétique (SRM) et la tomographie par résistivité électrique (TRE), pour cartographier la géologie de subsurface et caractériser les couches aquifères et leurs relations hydrauliques avec les lacs. Les données géophysiques ont été rapprochées de la géologie de surface et des données de 6 forages. Dix profils électriques ont été réalisés afin d’évaluer l’épaisseur des unités hydrogéologiques et leurs changements de faciès, tandis que le SRM a été employé pour déterminer le toit de la zone saturée. Il en résulte que l’aquifère du système des Lacs d’Estaña et de la région environnante est identifié comme étant constitué de roches carbonatées du Trias Moyen, ce qui ne correspond pas à l’aquifère régional (Crétacé supérieur et Eocène). Ce travail montre l’efficacité des méthodes géophysiques dans les zones faiblement connues et tectoniquement complexes, en accompagnement des tests standard sur les aquifères en vue d’une évaluation de leurs propriétés hydrauliques.ResumenSe presenta la caracterización geofísica de un sistema kárstico endorreico que no ha sido estudiado previamente. El área estudiada, conocida como las Lagunas de Estaña, está ubicada en las Sierras Marginales Pirenaicas, en el norte de España. Las Lagunas de Estaña son un conjunto de cuerpos naturales de agua sobre una base de evaporitas, lutitas y carbonatos Triásicos. Este humedal está incluido en la red Europea Natura 2000 de protección de áreas naturales como un “Lugar de interés comunitario”. Se usaron dos técnicas geofísicas, los sondeos de resonancia magnética (SRM) y la tomografía de resistividad eléctrica (TRE), para cartografiar la geología de subsuelo y caracterizar las capas acuíferas y la relación hidráulica entre el acuífero y las lagunas. Los datos geofísicos se integraron con la geología de superficie y los datos provenientes de seis sondeos. Se llevaron a cabo diez perfiles eléctricos para identificar el espesor de las unidades y los cambios litológicos, mientras que los SRM se usaron para determinar el techo de la zona saturada. Como resultado, el acuífero en el sistema de las Lagunas de Estaña y el área vecina se ha identificado como los carbonatos del Triásico Medio, que no se corresponde con el acuífero regional en el área (Cretácico superior y Eoceno). Este trabajo muestra la potencialidad de los métodos geofísicos en áreas pobremente entendidas y tectónicamente complejas, como complemento a las técnicas hidrogeológicas estándar para evaluar las propiedades hidráulicas de los acuíferos.摘要本文提出一种在之前未研究过的内流喀斯特系统中刻画地球物理特征的方法。研究区Estaña湖位于西班牙北部比利牛斯山脉边缘的锯齿山,是位于三叠纪蒸发岩、泥屑岩、碳酸盐基岩上的一套天然水泡,该湿地作为“重要群落站点”,属于天然2000欧洲的自然保护区域网络。用磁共振测深(MRS)及电阻率断层扫描(ERT)两种地球物理技术刻画地下地质情况并描述含水层特征以及含水层与湖之间的水力联系。并将地球物理数据与地表地质情况及六个钻孔的数据进行整合。10个电测深剖面用于确定地质体的厚度以及岩性变化,MRS用于确定饱和带的顶面。结果Estaña湖及其周围地区的含水层被鉴定为中三叠纪碳酸盐,与区域上(上白垩纪及始新世)的含水层不一致。本次工作表明地球物理方法在了解较少及地形复杂区可作为标准含水层测试的补充手段用于评价水力性质。ResumoApresenta-se a caraterização geofísica de um sistema cársico endorreico, que não foi estudado anteriormente. A área de estudo, conhecida como os Lagos de Estaña, localiza-se nas Serras Marginais Pirenaicas, no norte de Espanha. Os Lagos de Estaña formam um conjunto de lagoas naturais no substrato de evaporitos, lutitos e carbonatos triásicos. Esta zona húmida pertence à Rede Europeia Natura 2000 de proteção da Natureza, na categoria de “Sítio de Importância Comunitária”. Foram usadas duas técnicas geofísicas, ressonância magnética (MRS) e tomografia de resistividade elétrica (ERT), para mapear a geologia subsuperficial e caraterizar as camadas aquíferas e as ligações hidráulicas entre os aquíferos e os lagos. Os dados geofísicos foram integrados com a geologia superficial e a informação obtida em seis perfurações. Foram realizados dez perfis elétricos para identificar a espessura das unidades e as mudanças litológicas, enquanto os dados de MRS foram usados para determinar o topo da zona saturada. Como resultado desta investigação, o aquífero do sistema dos Lagos de Estaña e áreas circundantes foi identificado como pertencente aos carbonatos do Triásico médio, não coincidente com o aquífero regional da área (Cretácico superior e Eocénico). Este trabalho revela o poder dos métodos geofísicos em áreas pouco estudadas e com tetónica complexa, como ferramenta adicional relativamente aos ensaios clássicos de aquíferos que permitem avaliar propriedades hidráulicas.

[1]  F. Rubio,et al.  The use of MRS in the determination of hydraulic transmissivity: The case of alluvial aquifers , 2008 .

[2]  J. Combs,et al.  Core hole drilling and the “rain curtain” phenomenon at Newberry Volcano, Oregon , 1988 .

[3]  J. Roy,et al.  MRS contribution to hydrogeological system parametrization , 2005 .

[4]  Jean-Michel Baltassat,et al.  Nuclear magnetic resonance as a geophysical tool for hydrogeologists , 2002 .

[5]  M. Loke Electrical Imaging Surveys for Environmental and Engineering Studies , 2022 .

[6]  S. Riera,et al.  2000-year environmental history of a karstic lake in the Mediterranean Pre-Pyrenees: the Estanya lakes (Spain) , 2004 .

[7]  J. Roy,et al.  Hydrogeological interpretation and potential of the new magnetic resonance sounding, MRS, method , 2003 .

[8]  M. Loke,et al.  Time-lapse resistivity imaging inversion , 1999 .

[9]  S. Riera,et al.  Lake responses to historical land use changes in northern Spain: The contribution of non-pollen palynomorphs in a multiproxy study , 2006 .

[10]  G. Heinson,et al.  A comparison of electrical and electromagnetic methods for the detection of hydraulic pathways in a fractured rock aquifer, Clare Valley, South Australia , 2004 .

[11]  J. Roy,et al.  Use of MRS for hydrogeological system parameterization and modelling , 2007 .

[12]  Cinemática rotacional del cabalgamiento basal surpirenaico en las Sierras Exteriores Aragonesas: Datos magnetotectónicos , 1997 .

[13]  J. Duran,et al.  Análisis litoestratigráfico del Keuper Surpirenaico Central , 2004 .

[14]  Laurence R. Bentley,et al.  Application of electrical resistivity imaging to the development of a geologic model for a proposed Edmonton landfill site , 2003 .

[15]  K. Chalikakis,et al.  Investigation of sedimentary aquifers in Denmark using the magnetic resonance sounding method (MRS). , 2009 .

[16]  Thomas C. Winter,et al.  Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota , 1997 .

[17]  R. E. Sheriff,et al.  Applied Geophysics: Appendix B. Location Determination , 1990 .

[18]  Muddu Sekhar,et al.  Resolution of MRS Applied to the Characterization of Hard‐Rock Aquifers , 2006, Ground water.

[19]  J. Roy,et al.  The magnetic resonance sounding technique and its use for groundwater investigations , 2003 .

[20]  Wanfang Zhou,et al.  Effective electrode array in mapping karst hazards in electrical resistivity tomography , 2002 .

[21]  Richard G. Niswonger,et al.  Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico , 1999 .

[22]  R. Hoffmann,et al.  Influence of natural time-dependent variations of electrical conductivity on DC resistivity measurements , 2004 .

[23]  R. Owen,et al.  Multi-electrode resistivity survey for groundwater exploration in the Harare greenstone belt, Zimbabwe , 2006 .

[24]  F. M. Rubio Basic theory of the Magnetic Resonance Sounding Method , 2007 .

[25]  J. Bernard Instruments and field work to measure a Magnetic Resonance Sounding , 2007 .

[26]  Richard P. Smith,et al.  Borehole geophysical techniques to define stratigraphy, alteration and aquifers in basalt , 2004 .

[27]  Tres Cantos Hydrogeological experience in the use of MRS , 2007 .

[28]  André Revil,et al.  Constraining fault-zone hydrogeology through integrated hydrological and geoelectrical analysis , 2009 .

[29]  J. Chambers,et al.  Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site , 2006 .

[30]  M. M. Mohan Kumar,et al.  Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding , 2008 .

[31]  Roelof Versteeg,et al.  An integrated geophysical investigation of the hydrogeology of an anisotropic unconfined aquifer , 2002 .

[32]  M. B. M. Peña La estructura del límite occidental de la unidad surpirenaica central , 1991 .

[33]  Ugur Yaramanci,et al.  Inversion of Magnetic Resonance Sounding data , 2007 .

[34]  M. Mejías,et al.  General concepts in Hydrogeology and Geophysics related to MRS , 2007 .

[35]  M. Schoor Detection of sinkholes using 2D electrical resistivity imaging , 2002 .

[36]  Jean-Michel Vouillamoz,et al.  Magnetic Resonance Sounding Applied to Aquifer Characterization , 2004, Ground water.

[37]  A. Pocoví,et al.  El amortiguamiento frontal de la estructura de la cobertera surpirenaica y su relación con el anticlinal de Barbastro-Balaguer , 1988 .

[38]  G. Santarato,et al.  Strategic groundwater resources in the Tagliamento River basin (northern Italy): hydrogeological investigation integrated with geophysical exploration , 2009 .

[39]  M. Sophocleous Interactions between groundwater and surface water: the state of the science , 2002 .

[40]  A. Legchenko,et al.  MRS measurements and inversion in presence of EM noise , 2007 .

[41]  A. Navas,et al.  Holocene palaeohydrology and climate variability in northeastern Spain: The sedimentary record of Lake Estanya (Pre-Pyrenean range) , 2008 .

[42]  J. Girard,et al.  Locating water-filled karst caverns and estimating their volume using magnetic resonance soundings , 2008 .

[43]  R. Barker,et al.  The Application Of Electrical Tomography In The Study Of The Unsaturated Zone In Chalk At Three Sites In Cambridgeshire, United Kingdom , 1995 .

[44]  M. L. S. José,et al.  Nota preliminar sobre la presencia de estructuras fluidales en las ofitas del area de Estopiñán (Provincia de Huesca) , 1982 .

[45]  J. Roy,et al.  Magnetic Resonance Sounding: New Method for Ground Water Assessment , 2004, Ground water.

[46]  Anatoly Legchenko,et al.  A review of the basic principles for proton magnetic resonance sounding measurements , 2002 .

[47]  J. Muñoz,et al.  Thrust sequence in the southern central Pyrenees , 1990 .

[48]  J. Corella,et al.  Late Quaternary deposition and facies model for karstic Lake Estanya (North‐eastern Spain) , 2009 .

[49]  J. Muñoz Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section , 1992 .

[50]  F. Cabo,et al.  El Keuper de los Catalánides. , 1987 .