MVAPACK: A Complete Data Handling Package for NMR Metabolomics

Data handling in the field of NMR metabolomics has historically been reliant on either in-house mathematical routines or long chains of expensive commercial software. Thus, while the relatively simple biochemical protocols of metabolomics maintain a low barrier to entry, new practitioners of metabolomics experiments are forced to either purchase expensive software packages or craft their own data handling solutions from scratch. This inevitably complicates the standardization and communication of data handling protocols in the field. We report a newly developed open-source platform for complete NMR metabolomics data handling, MVAPACK, and describe its application on an example metabolic fingerprinting data set.

[1]  Chang Hoon Lee,et al.  Application of a 1H nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. , 2008, Journal of agricultural and food chemistry.

[2]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[3]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[4]  Márcia M. C. Ferreira,et al.  Optimized bucketing for NMR spectra: Three case studies , 2013 .

[5]  Nigel W. Hardy,et al.  Summary recommendations for standardization and reporting of metabolic analyses , 2005, Nature Biotechnology.

[6]  I. Jolliffe Principal Component Analysis , 2005 .

[7]  John C Lindon,et al.  Automatic alignment of individual peaks in large high-resolution spectral data sets. , 2004, Journal of magnetic resonance.

[8]  Pan Du,et al.  Bioinformatics Original Paper Improved Peak Detection in Mass Spectrum by Incorporating Continuous Wavelet Transform-based Pattern Matching , 2022 .

[9]  F Savorani,et al.  icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. , 2010, Journal of magnetic resonance.

[10]  Abebe Belay,et al.  Measurement of caffeine in coffee beans with UV/vis spectrometer , 2008 .

[11]  Elena Tsiporkova,et al.  NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. , 2008, Analytical chemistry.

[12]  David S. Wishart,et al.  MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis , 2012, Nucleic Acids Res..

[13]  Xavier Correig,et al.  Focus: a robust workflow for one-dimensional NMR spectral analysis. , 2014, Analytical chemistry.

[14]  Frans van den Berg,et al.  An exploratory chemometric study of 1H NMR spectra of table wines , 2006 .

[15]  R. J. O. Torgrip,et al.  A note on normalization of biofluid 1D 1H-NMR data , 2008, Metabolomics.

[16]  J. Trygg,et al.  Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. , 2005, Analytical chemistry.

[17]  Yi-Zeng Liang,et al.  Monte Carlo cross‐validation for selecting a model and estimating the prediction error in multivariate calibration , 2004 .

[18]  D. Gauguier,et al.  Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. , 2005, Analytical chemistry.

[19]  Tao Wang,et al.  Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis , 2009, BMC Bioinformatics.

[20]  Age K. Smilde,et al.  UvA-DARE ( Digital Academic Repository ) Assessment of PLSDA cross validation , 2008 .

[21]  R. A. van den Berg,et al.  Centering, scaling, and transformations: improving the biological information content of metabolomics data , 2006, BMC Genomics.

[22]  R. Barnes,et al.  Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra , 1989 .

[23]  Royston Goodacre,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2006 .

[24]  S. Wold,et al.  Orthogonal projections to latent structures (O‐PLS) , 2002 .

[25]  Yi-Zeng Liang,et al.  Monte Carlo cross validation , 2001 .

[26]  Johan Trygg,et al.  CV‐ANOVA for significance testing of PLS and OPLS® models , 2008 .

[27]  Palmira Villa,et al.  Descriptive review of current NMR-based metabolomic data analysis packages. , 2011, Progress in nuclear magnetic resonance spectroscopy.

[28]  R. Powers,et al.  Revisiting Protocols for the NMR Analysis of Bacterial Metabolomes. , 2013, Journal of integrated OMICS.

[29]  W. Härdle,et al.  Applied Multivariate Statistical Analysis , 2003 .

[30]  Zhiqiang Weng,et al.  Communication An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization , 2002 .

[31]  U. Edlund,et al.  Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. , 2008, Analytical chemistry.

[32]  Peyman Eshghi,et al.  Dimensionality choice in principal components analysis via cross-validatory methods , 2014 .

[33]  Manuel Desco,et al.  A novel R-package graphic user interface for the analysis of metabonomic profiles , 2009, BMC Bioinformatics.

[34]  John W. Eaton,et al.  GNU Octave Manual Version 3 , 2008 .

[35]  A. J. Shaka,et al.  Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients , 1995 .

[36]  Age K. Smilde,et al.  Direct orthogonal signal correction , 2001 .

[37]  Jan van der Greef,et al.  Characterization of anti-inflammatory compounds using transcriptomics, proteomics, and metabolomics in combination with multivariate data analysis. , 2004, International immunopharmacology.

[38]  DuPan,et al.  Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching , 2006 .

[39]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[40]  R. Powers,et al.  Simultaneous Phase and Scatter Correction for NMR Datasets. , 2014, Chemometrics and intelligent laboratory systems : an international journal sponsored by the Chemometrics Society.

[41]  Christophe Croux,et al.  TOMCAT: A MATLAB toolbox for multivariate calibration techniques , 2007 .

[42]  M. Rantalainen,et al.  OPLS discriminant analysis: combining the strengths of PLS‐DA and SIMCA classification , 2006 .

[43]  Miron Livny,et al.  BioMagResBank , 2007, Nucleic Acids Res..

[44]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[45]  M. Viant Improved methods for the acquisition and interpretation of NMR metabolomic data. , 2003, Biochemical and biophysical research communications.

[46]  A. J. Shaka,et al.  SOGGY: solvent-optimized double gradient spectroscopy for water suppression. A comparison with some existing techniques. , 2007, Journal of magnetic resonance.

[47]  H. Senn,et al.  Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. , 2006, Analytical chemistry.

[48]  Dimitrios Spiliotopoulos,et al.  muma, An R Package for Metabolomics Univariate and Multivariate Statistical Analysis , 2013 .

[49]  M. Siegel The use of the modified simplex method for automatic phase correction in fourier-transform nuclear magnetic resonance spectroscopy , 1981 .

[50]  Douglas B. Kell,et al.  Proposed minimum reporting standards for data analysis in metabolomics , 2007, Metabolomics.

[51]  F. Mancin,et al.  Seeing through macromolecules: T2-filtered NMR for the purity assay of functionalized nanosystems and the screening of biofluids. , 2009, Journal of the American Chemical Society.