Meteorite Delivery via Yarkovsky Orbital Drift

Abstract We provide a unified discussion of the Yarkovsky effect in both the original, “diurnal” variant and also for the “seasonal” variant which has been recently shown by Rubincam (1995) to be important for meteorite-sized, regolith-free asteroid fragments. After computing the rate of the corresponding semimajor axis drift as a function of size and spin rate, and comparing the relevant time scales with those for collisional disruption and spin reorientation, we discuss some issues in meteorite science which are put in a new light by the relevance of the Yarkovsky effect. In particular, this mechanism provides a good explanation for the fact that meteorite cosmic ray exposure ages (in particular for irons) are much longer than the dynamical lifetimes of objects delivered to the Earth-crossing region through resonances. Thanks to the Yarkovsky effect, small asteroid fragments in the belt undergo a slow drift in semimajor axis (with a random-walk component related to their rotational state) and therefore have enough mobility to reach the resonances after comparatively long times spent in nonresonant main-belt orbits. Metal-rich fragments have slower Yarkovsky drift rates than stones, but their much longer collisional lifetimes may explain why iron meteorites appear to sample a larger number of asteroid parent bodies compared to ordinary chondrites.

[1]  V. V. Radzievskii A mechanism for the disintegration of asteroids and meteorites , 1952 .

[2]  G. W. Wetherill,et al.  Collisions in the asteroid belt , 1967 .

[3]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[4]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[5]  E. Scott,et al.  Classification and properties of iron meteorites , 1975 .

[6]  C. Peterson A source mechanism for meteorites controlled by the Yarkovsky effect , 1976 .

[7]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[8]  A. Harris,et al.  Asteroid rotation rates , 1979 .

[9]  A. Harris Asteroid rotation rates: II. A theory for the collisional evolution of rotation rates , 1979 .

[10]  G. Wetherill Multiple cosmic-ray exposure ages of meteorites , 1980 .

[11]  A. Fujiwara,et al.  Rotation of fragments in catastrophic impact , 1981 .

[12]  A. Fujiwara Energy partition into translational and rotational motion of fragments in catastrophic disruption by impact: An experiment and asteroid cases , 1987 .

[13]  D. Rubincam,et al.  LAGEOS orbit decay due to infrared radiation from Earth , 1987 .

[14]  R. Reedy,et al.  Irradiation records in meteorites , 1988 .

[15]  D. Rubincam Yarkovsky Thermal Drag on LAGEOS , 1988 .

[16]  Paolo Farinella,et al.  A semiempirical model of catastrophic breakup processes , 1989 .

[17]  Richard P. Binzel,et al.  Asteroid collisional history - Effects on sizes and spins , 1989 .

[18]  Richard P. Binzel,et al.  Asteroid rotation rates - Distributions and statistics , 1989 .

[19]  M. Nolan,et al.  Delivery of asteroids and meteorites to the inner solar system , 1989 .

[20]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[21]  Akio Fujiwara,et al.  Experiments and scaling laws for catastrophic collisions. [of asteroids] , 1989 .

[22]  J. Wasson Ungrouped Iron Meteorites in Antarctica: Origin of Anomalously High Abundance , 1990, Science.

[23]  Angular momentum transfer in low velocity oblique impacts: Implications for asteroids , 1991 .

[24]  A. McEwen,et al.  Galileo Encounter with 951 Gaspra: First Pictures of an Asteroid , 1992, Science.

[25]  K. Marti,et al.  COSMIC-RAY EXPOSURE HISTORY OF ORDINARY CHONDRITES , 1992 .

[26]  P. Farinella,et al.  Collision rates and impact velocities in the Main Asteroid Belt , 1992 .

[27]  The collisional lifetime of asteroid 951 Gaspra , 1992 .

[28]  M. S. Matthews,et al.  Hazards Due to Comets and Asteroids , 1992 .

[29]  Robert A Kolvoord,et al.  Collision lifetimes and impact statistics of near-Earth asteroids , 1993 .

[30]  P. Farinella,et al.  Meteorites from the asteroid 6 Hebe , 1993 .

[31]  P. Farinella,et al.  The Injection of Asteroid Fragments into Resonances , 1993 .

[32]  David L. Rabinowitz,et al.  The size distribution of the earth-approaching asteroids , 1993 .

[33]  J. Veverka,et al.  Collisional History of Gaspra , 1994 .

[34]  P. N. Smith,et al.  Field Fragmentation of Macroscopic Targets Simulating Asteroidal Catastrophic Collisions , 1994 .

[35]  P. Farinella,et al.  Delivery of meteorites through the nu 6 secular resonance , 1994 .

[36]  D. Rabinowitz The size and shape of the near-Earth asteroid belt , 1994 .

[37]  Giovanni B. Valsecchi,et al.  Asteroids falling into the Sun , 1994, Nature.

[38]  Will the Real Asteroid Size Distribution Please Step Forward , 1994 .

[39]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[40]  H. Haack,et al.  Catastrophic fragmentation of asteroids: evidence from meteorites , 1994 .

[41]  R. Gomes,et al.  Asteroid fragments in Earth-crossing orbits , 1995 .

[42]  P. Farinella,et al.  The Dynamics of Objects in Orbits Resembling That of P/Encke , 1995 .

[43]  M. E. Davies,et al.  Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl , 1995, Nature.

[44]  Andrea Milani,et al.  An Asteroid on the Brink , 1995 .

[45]  D. Rubincam,et al.  Asteroid orbit evolution due to thermal drag , 1995 .

[46]  Harold F. Levison,et al.  The Dynamical Evolution of Lunar Impact Ejecta , 1995 .

[47]  Alan W. Harris,et al.  The Rotation Rates of Very Small Asteroids: Evidence for Rubble-Pile Structure , 1996 .

[48]  Paolo Farinella,et al.  Thermal force effects on slowly rotating, spherical artificial satellites - I. Solar heating , 1996 .

[49]  S. Love,et al.  Catastrophic Impacts on Gravity Dominated Asteroids , 1996 .

[50]  Z. Ceplecha Luminous efficiency based on photographic observations of the Lost City fireball and implications for the influx of interplanetary bodies onto Earth. , 1996 .

[51]  F. Barlier,et al.  The rotation of LAGEOS and its long‐term semimajor axis decay: A self‐consistent solution , 1996 .

[52]  H. Melosh,et al.  Origin of the Spacewatch Small Earth-Approaching Asteroids , 1996 .

[53]  Asteroid 6 Hebe: Spectral Evaluation of the Prime Large Mainbelt Ordinary Chondrite Parent Body Candidate with Implications from Space Weathering of Gaspra and the Ida-Dactyl System , 1996 .

[54]  H. Haack,et al.  Meteoritic, Asteroidal, and Theoretical Constraints on the 500 Ma Disruption of theLChondrite Parent Body , 1996 .

[55]  J. Burns,et al.  The Exchange of Impact Ejecta Between Terrestrial Planets , 1996, Science.

[56]  P. Farinella,et al.  Surface Properties of (6) Hebe: A Possible Parent Body of Ordinary Chondrites , 1997 .

[57]  Yarkovsky Effects: Possible Consequences on Meteorites and Asteroids , 1997 .

[58]  H. Melosh,et al.  ASTEROIDS : SHATTERED BUT NOT DISPERSED , 1997 .

[59]  M. Bailey,et al.  Vesta fragments from v6 and 3:1 resonances: Implications for V‐type near‐Earth asteroids and howardite, eucrite and diogenite meteorites , 1997 .

[60]  P. Farinella,et al.  Thermal force effects on slowly rotating, spherical artificial satellites—II. Earth infrared heating , 1997 .

[61]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[62]  D. Rubincam Yarkovsky thermal drag on small asteroids and Mars‐Earth delivery , 1998 .

[63]  THE FLUX OF TUNGUSKA-SIZED FRAGMENTS FROM THE MAIN ASTEROID BELT , 1998 .