Spanning trees crossing few barriers
暂无分享,去创建一个
Leonidas J. Guibas | Mark de Berg | Otfried Cheong | Tetsuo Asano | Hisao Tamaki | Jack Snoeyink | L. Guibas | H. Tamaki | J. Snoeyink | M. D. Berg | T. Asano | O. Cheong
[1] L. Tóth. Illumination of convex discs , 1977 .
[2] Leonidas J. Guibas,et al. Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..
[3] Bernard Chazelle,et al. Quasi-optimal range searching in spaces of finite VC-dimension , 1989, Discret. Comput. Geom..
[4] F. Frances Yao,et al. Efficient binary space partitions for hidden-surface removal and solid modeling , 1990, Discret. Comput. Geom..
[5] Jirí Matousek,et al. Spanning trees with low crossing number , 1991, RAIRO Theor. Informatics Appl..
[6] Emo Welzl,et al. On Spanning Trees with Low Crossing Numbers , 1992, Data Structures and Efficient Algorithms.
[7] Paolo Giulio Franciosa,et al. On the Optimal Binary Plane Partition for Sets of Isothetic Rectangles , 1992, Inf. Process. Lett..
[8] Mark de Berg,et al. Ray Shooting, Depth Orders and Hidden Surface Removal , 1993, Lecture Notes in Computer Science.
[9] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[10] Marc J. van Kreveld,et al. Linear-Time Reconstruction of Delaunay Triangulations with Applications , 1997, ESA.
[11] Mark de Berg,et al. Realistic input models for geometric algorithms , 1997, SCG '97.
[12] Jorge Urrutia,et al. Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.
[13] Mark de Berg,et al. Linear Size Binary Space Partitions for Uncluttered Scenes , 2000, Algorithmica.