Nonlinear Integration of Visual and Haltere Inputs in Fly Neck Motor Neurons

Animals use information from multiple sensory organs to generate appropriate behavior. Exactly how these different sensory inputs are fused at the motor system is not well understood. Here we study how fly neck motor neurons integrate information from two well characterized sensory systems: visual information from the compound eye and gyroscopic information from the mechanosensory halteres. Extracellular recordings reveal that a subpopulation of neck motor neurons display “gating-like” behavior: they do not fire action potentials in response to visual stimuli alone but will do so if the halteres are coactivated. Intracellular recordings show that these motor neurons receive small, sustained subthreshold visual inputs in addition to larger inputs that are phase locked to haltere movements. Our results suggest that the nonlinear gating-like effect results from summation of these two inputs with the action potential threshold providing the nonlinearity. As a result of this summation, the sustained visual depolarization is transformed into a temporally structured train of action potentials synchronized to the haltere beating movements. This simple mechanism efficiently fuses two different sensory signals and may also explain the context-dependent effects of visual inputs on fly behavior.

[1]  H. Markl,et al.  Head Movements in Flies ( Calliphora ) Produced by Deflexion of the Halteres , 1980 .

[2]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[3]  G. Nalbach,et al.  Extremely non-orthogonal axes in a sense organ for rotation: Behavioural analysis of the dipteran haltere system , 1994, Neuroscience.

[4]  Holger G. Krapp,et al.  Neural encoding of behaviourally relevant visual-motion information in the fly , 2002, Trends in Neurosciences.

[5]  M. Dickinson,et al.  Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  Roland Hengstenberg,et al.  Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process , 1991 .

[7]  E. Staudacher,et al.  Gating of sensory responses of descending brain neurones during walking in crickets , 1998 .

[8]  Michael H Dickinson,et al.  The Initiation and Control of Rapid Flight Maneuvers in Fruit Flies1 , 2005, Integrative and comparative biology.

[9]  R. Murphey,et al.  The shaking-B2 Mutation Disrupts Electrical Synapses in a Flight Circuit in AdultDrosophila , 1997, The Journal of Neuroscience.

[10]  G. Somjen,et al.  FUNCTIONAL SIGNIFICANCE OF CELL SIZE IN SPINAL MOTONEURONS. , 1965, Journal of neurophysiology.

[11]  Cole Gilbert,et al.  Proprioceptive encoding of head position in the black soldier fly, Hermetia illucens (L.) (Stratiomyidae) , 2006, Journal of Experimental Biology.

[12]  G Laurent,et al.  Dendritic excitability and a voltage-gated calcium current in locust nonspiking local interneurons. , 1993, Journal of neurophysiology.

[13]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[14]  A. G. Greenhill Kinematics and Dynamics , 1888, Nature.

[15]  D. Sandeman,et al.  Angular acceleration, compensatory head movements and the halteres of flies (Lucilia serricata) , 1980, Journal of comparative physiology.

[16]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[17]  R. Hengstenberg Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.

[18]  Roland Hengstenberg,et al.  Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig. , 1992, Journal of Comparative Physiology A.

[19]  N. J. Strausfeld,et al.  Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala , 1985, Cell and Tissue Research.

[20]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[21]  H. Krapp,et al.  Sensory Systems and Flight Stability: What do Insects Measure and Why? , 2007 .

[22]  T. Matheson,et al.  A simple computer-controlled analogue ramp generator for producing multiple ramp-and-hold stimuli , 1991, Journal of Neuroscience Methods.

[23]  N. J. Strausfeld,et al.  The neck motor system of the flyCalliphora erythrocephala , 2004, Journal of Comparative Physiology A.

[24]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[25]  G. DeAngelis,et al.  Neural correlates of multisensory cue integration in macaque MSTd , 2008, Nature Neuroscience.

[26]  T. Daniel,et al.  A neural basis for gyroscopic force measurement in the halteres of Holorusia , 2008, Journal of Comparative Physiology A.

[27]  N. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. I: Muscles and motor neurons , 1987 .

[28]  H. Krapp,et al.  Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.

[29]  M. Dickinson,et al.  A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster , 2003, Journal of Experimental Biology.

[30]  M H Dickinson,et al.  Convergent mechanosensory input structures the firing phase of a steering motor neuron in the blowfly, Calliphora. , 1999, Journal of neurophysiology.

[31]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[32]  W. Davis,et al.  Functional significance of motorneuron size and soma position in swimmeret system of the lobster. , 1971, Journal of neurophysiology.

[33]  W P Chan,et al.  Visual input to the efferent control system of a fly's "gyroscope". , 1998, Science.

[34]  C. H. F. Rowell,et al.  Neuronal circuits controlling flight in the locust: how sensory information is processed for motor control , 1986, Trends in Neurosciences.

[35]  K. Sillar,et al.  A neuronal mechanism for sensory gating during locomotion in a vertebrate , 1988, Nature.

[36]  S. Laughlin,et al.  A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli , 2006, Journal of Experimental Biology.

[37]  R. Hengstenberg,et al.  The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.

[38]  C. H. F. Rowell,et al.  Course correction circuitry translates feature detection into behavioural action in locusts , 1985, Nature.

[39]  M. Dickinson,et al.  Position‐specific central projections of mechanosensory neurons on the haltere of the blow fly, Calliphora vicina , 1996, The Journal of comparative neurology.

[40]  Gilbert,et al.  Resistance reflex that maintains upright head posture in the flesh fly neobellieria bullata (Sarcophagidae) , 1998, The Journal of experimental biology.

[41]  P. Katz,et al.  Synaptic Gating: The Potential to Open Closed Doors , 2003, Current Biology.

[42]  M. Dickinson,et al.  Haltere Afferents Provide Direct, Electrotonic Input to a Steering Motor Neuron in the Blowfly, Calliphora , 1996, The Journal of Neuroscience.

[43]  Nicholas J. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. II: Sensory organization , 1987 .

[44]  W. Gronenberg,et al.  Descending neurons supplying the neck and flight motor of diptera: Organization and neuroanatomical relationships with visual pathways , 1990, The Journal of comparative neurology.

[45]  J. Pringle The gyroscopic mechanism of the halteres of Diptera , 1948, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[46]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[47]  Alexander Borst,et al.  Nonlinear Integration of Binocular Optic Flow by DNOVS2, A Descending Neuron of the Fly , 2008, The Journal of Neuroscience.

[48]  K Hausen,et al.  Decoding of retinal image flow in insects. , 1993, Reviews of oculomotor research.

[49]  H G Krapp,et al.  Neuronal matched filters for optic flow processing in flying insects. , 2000, International review of neurobiology.

[50]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[51]  M. Egelhaaf,et al.  Variability of blowfly head optomotor responses , 2009, Journal of Experimental Biology.