Hopf algebras and Tutte polynomials

Abstract By considering Tutte polynomials of Hopf algebras, we show how a Tutte polynomial can be canonically associated with combinatorial objects that have some notions of deletion and contraction. We show that several graph polynomials from the literature arise from this framework. These polynomials include the classical Tutte polynomial of graphs and matroids, Las Vergnas' Tutte polynomial of the morphism of matroids and his Tutte polynomial for embedded graphs, Bollobas and Riordan's ribbon graph polynomial, the Krushkal polynomial, and the Penrose polynomial. We show that our Tutte polynomials of Hopf algebras share common properties with the classical Tutte polynomial, including deletion-contraction definitions, universality properties, convolution formulas, and duality relations. New results for graph polynomials from the literature are then obtained as examples of the general results. Our results offer a framework for the study of the Tutte polynomial and its analogues in other settings, offering the means to determine the properties and connections between a wide class of polynomial invariants.

[1]  Hendrik Jan Hoogeboom,et al.  Interlace polynomials for multimatroids and delta-matroids , 2010, Eur. J. Comb..

[2]  Joanna A. Ellis-Monaghan,et al.  Twisted duality for embedded graphs , 2009, 0906.5557.

[3]  H. Crapo,et al.  The Tutte polynomial , 1969, 1707.03459.

[4]  Michel Las Vergnas,et al.  External and internal elements of a matroid basis , 1998, Discret. Math..

[5]  Clark Butler A quasi-tree expansion of the Krushkal polynomial , 2018, Adv. Appl. Math..

[6]  Iain Moffatt,et al.  The Las Vergnas polynomial for embedded graphs , 2015, Eur. J. Comb..

[7]  Béla Bollobás,et al.  A Polynomial Invariant of Graphs On Orientable Surfaces , 2001 .

[8]  André Bouchet,et al.  Maps and Delta-matroids , 1989, Discret. Math..

[9]  Iain Moffatt,et al.  Evaluations of Topological Tutte Polynomials , 2011, Combinatorics, Probability and Computing.

[10]  M. Aigner The Penrose polynomial of a plane graph , 1997 .

[11]  Martin Aigner,et al.  The Penrose Polynomial of Binary Matroids , 2000 .

[12]  Sergei K. Lando,et al.  On a Hopf Algebra in Graph Theory , 2000, J. Comb. Theory, Ser. B.

[13]  Michel Las Vergnas,et al.  The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives , 1999 .

[14]  William Schmitt,et al.  Incidence Hopf algebras , 1994 .

[15]  Oliver T. Dasbach,et al.  The Jones polynomial and graphs on surfaces , 2008, J. Comb. Theory, Ser. B.

[16]  Iain Moffatt,et al.  Graphs on Surfaces - Dualities, Polynomials, and Knots , 2013, Springer Briefs in Mathematics.

[17]  Vyacheslav Krushkal,et al.  Graphs, Links, and Duality on Surfaces , 2009, Combinatorics, Probability and Computing.

[18]  Joanna A. Ellis-Monaghan New Results for the Martin Polynomial , 1998, J. Comb. Theory, Ser. B.

[19]  Convolution-multiplication identities for Tutte polynomials of graphs and matroids , 2010, J. Comb. Theory, Ser. B.

[20]  Béla Bollobás,et al.  A polynomial of graphs on surfaces , 2002 .

[21]  Victor Reiner,et al.  A Convolution Formula for the Tutte Polynomial , 1999, J. Comb. Theory, Ser. B.

[22]  Nguyen Hoang Nghia,et al.  Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approach , 2013, Adv. Appl. Math..

[23]  S. Chmutov Dedicated to Askold Khovanskii on the occasion of his 60th birthday THE KAUFFMAN BRACKET OF VIRTUAL LINKS AND THE BOLLOBÁS-RIORDAN POLYNOMIAL , 2006 .

[24]  Iain Moffatt Knot invariants and the Bollobás-Riordan polynomial of embedded graphs , 2008, Eur. J. Comb..

[25]  Dror Bar-Natan,et al.  On the Vassiliev knot invariants , 1995 .

[26]  William T. Tutte A Ring in Graph Theory , 1947 .

[27]  Iain Moffatt,et al.  A Penrose polynomial for embedded graphs , 2013, Eur. J. Comb..

[28]  William T. Tutte Algebraic theory of graphs , 1949 .

[29]  S. Chmutov,et al.  Polynomial invariants of graphs on surfaces , 2010, 1012.5053.

[30]  Joseph P. S. Kung A multiplication identity for characteristic polynomials of matroids , 2004, Adv. Appl. Math..

[31]  Michel Las Vergnas,et al.  On the Tutte Polynomial of a Morphism of Matroids , 1980 .

[32]  Gian-Carlo Rota,et al.  Coalgebras and Bialgebras in Combinatorics , 1979 .

[33]  Hendrik Jan Hoogeboom,et al.  The group structure of pivot and loop complementation on graphs and set systems , 2011, Eur. J. Comb..

[34]  Joanna A. Ellis-Monaghan,et al.  A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan , 2009, Eur. J. Comb..

[35]  G. Farr Minors for alternating dimaps , 2013, 1311.2783.