Synthesis of non-rational controllers for linear delay systems

This paper addresses the control of linear delay systems using non-rational controllers. The structure of the controller is chosen so as to copy the structure of the plant, reproducing the delays in the state and in the output. The resulting stabilization and performance design problems are entirely expressed as linear matrix inequalities. Although the design inequalities are based on delay independent stability conditions, the overall design is delay dependent, in the sense that the controller makes use of the delay parameter of the plant. This parameter is assumed to be constant yet arbitrary. Using non-rational controllers we overcome the main difficulty faced when designing rational controllers for linear delay systems, which is to incorporate in the design problem the matrix multiplier used to prove stability with respect to the delayed part of the system. We illustrate the paper with several examples and provide extensive comparisons with existent results.

[1]  Myung Jin Chung,et al.  An LMI approach to H∞ controller design for linear time-delay systems , 1997, Autom..

[2]  Bugong Xu Comments on "Robust stability of delay dependence for linear uncertain systems" , 1994 .

[3]  Jesus Leyva-Ramos,et al.  Output feedback stabilizing controller for time-delay systems , 2000, Autom..

[4]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[5]  P. Peres,et al.  a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .

[6]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[7]  Karolos M. Grigoriadis,et al.  A Unified Algebraic Approach To Control Design , 1997 .

[8]  Juing-Huei Su Further results on the robust stability of linear systems with a single time delay , 1994 .

[9]  L. Dugard,et al.  Dynamical compensation for time-delay systems An LMI approach , 2000 .

[10]  M. Garcı́a-Sanz,et al.  Robust controller design for uncertain systems with variable time delay , 2001 .

[11]  M. Mahmoud Robust Control and Filtering for Time-Delay Systems , 2000 .

[12]  Jong Hae Kim,et al.  Robust controller design for uncertain systems with time delays: LMI approach , 1996, Autom..

[13]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[14]  Hans Zwart,et al.  On 𝒽∞ control for dead-time systems , 2000, IEEE Trans. Autom. Control..

[15]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[16]  Ian R. Petersen,et al.  An LMI approach to output-feedback-guaranteed cost control for uncertain time-delay systems , 2000 .

[17]  Shinji Hara,et al.  Some conditions which make the constantly scaled H∞ control synthesis problems convex , 2002 .

[18]  William S. Levine,et al.  The Control Handbook , 2005 .

[19]  U. Shaked,et al.  Bounded real criteria for linear time-delay systems , 1998, IEEE Trans. Autom. Control..

[20]  C. Scherer Mixed H2/H∞ Control , 1995 .

[21]  O Smith,et al.  CLOSER CONTROL OF LOOPS WITH DEAD TIME , 1957 .

[22]  Xi Li,et al.  Delay-dependent robust H control of uncertain linear state-delayed systems , 1999, Autom..

[23]  Panagiotis Tsiotras,et al.  Stability of time-delay systems: equivalence between Lyapunov and scaled small-gain conditions , 2001, IEEE Trans. Autom. Control..

[24]  H. Trinh Linear functional state observer for time-delay systems , 1999 .

[25]  C. D. Souza,et al.  Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach , 1997, IEEE Trans. Autom. Control..

[26]  Hans Zwart,et al.  On /spl Hscr//sub /spl infin// control for dead-time systems , 2000 .

[27]  P. Bliman Lyapunov–Krasovskii functionals and frequency domain: delay‐independent absolute stability criteria for delay systems , 2001 .

[28]  Emilia Fridman,et al.  New bounded real lemma representations for time-delay systems and their applications , 2001, IEEE Trans. Autom. Control..

[29]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[30]  Pierre-Alexandre Bliman,et al.  Lyapunov equation for the stability of linear delay systems of retarded and neutral type , 2002, IEEE Trans. Autom. Control..

[31]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.