Flexible and Scalable Query Planning in Distributed and Heterogeneous Environments

We present the application of the Planning by Rewriting (PbR) framework to query planning in distributed and heterogeneous environments. PbR is a new paradigm for efficient high-quality planning that exploits plan rewriting rules and efficient local search techniques to transform an easy-to-generate, but possibly suboptimal. initial plan into a high-quality plan. The resulting planner is scalable, flexible, has anytime behavior, and. applied to query planning, yields a novel combination of traditional query optimization with heterogeneous information source selection. Query planners are the core component of mediator systems, which are becoming increasingly important in a world of interconnected information, and constitute excellent test beds for planning technology.

[1]  David J. DeWitt,et al.  The EXODUS optimizer generator , 1987, SIGMOD '87.

[2]  Craig A. Knoblock,et al.  Planning by Rewriting: E ciently Generating High-Quality Plans , 1999 .

[3]  Goetz Graefe,et al.  Query evaluation techniques for large databases , 1993, CSUR.

[4]  Craig A. Knoblock,et al.  New Directions: Agents for Information Gathering , 1997, IEEE Expert.

[5]  Per-Åke Larson,et al.  Eager Aggregation and Lazy Aggregation , 1995, VLDB.

[6]  Monte Zweben,et al.  Scheduling and rescheduling with iterative repair , 1993, IEEE Trans. Syst. Man Cybern..

[7]  Robert M. MacGregor,et al.  A Deductive Pattern Matcher , 1988, AAAI.

[8]  Wesley W. Chu,et al.  Optimal Query Processing for Distributed Database Systems , 1982, IEEE Transactions on Computers.

[9]  Daniel S. Weld,et al.  Planning to gather inforrnation , 1996, AAAI 1996.

[10]  Daniel S. Weld,et al.  UCPOP: A Sound, Complete, Partial Order Planner for ADL , 1992, KR.

[11]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[12]  Joann J. Ordille,et al.  Query-Answering Algorithms for Information Agents , 1996, AAAI/IAAI, Vol. 1.

[13]  Craig A. Knoblock 1 Agents for Information Gathering , 1997 .

[14]  Craig A. Knoblock Planning, Executing, Sensing, and Replanning for Information Gathering , 1995, IJCAI.

[15]  Goetz Graefe,et al.  Extensible Query Optimization and Parallel Execution in Volcano , 1991, Query Processing for Advanced Database Systems.

[16]  Matthias Jarke,et al.  Query Optimization in Database Systems , 1984, CSUR.

[17]  Daniel S. Weld,et al.  Planning to Gather Information , 1996, AAAI/IAAI, Vol. 1.

[18]  Yannis E. Ioannidis,et al.  Randomized algorithms for optimizing large join queries , 1990, SIGMOD '90.

[19]  Craig A. Knoblock,et al.  Information Gathering Plans With Sensing Actions , 1997, ECP.

[20]  Hamid Pirahesh,et al.  Extensible/rule based query rewrite optimization in Starburst , 1992, SIGMOD '92.

[21]  James A. Hendler,et al.  UMCP: A sound and complete planning procedure for hierarchical task-network planning , 1994 .

[22]  Qiang Yang,et al.  Theory and Algorithms for Plan Merging , 1992, Artif. Intell..

[23]  James A. Hendler,et al.  UMCP: A Sound and Complete Procedure for Hierarchical Task-network Planning , 1994, AIPS.

[24]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[25]  Craig A. Knoblock Building a Planner for Information Gathering: A Report from the Trenches , 1996, AIPS.

[26]  Arun N. Swami,et al.  Optimization of large join queries: combining heuristics and combinatorial techniques , 1989, SIGMOD '89.

[27]  Austin Tate,et al.  Generating Project Networks , 1977, IJCAI.