Magnetic particle hyperthermia—a promising tumour therapy?

We present a critical review of the state of the art of magnetic particle hyperthermia (MPH) as a minimal invasive tumour therapy. Magnetic principles of heating mechanisms are discussed with respect to the optimum choice of nanoparticle properties. In particular, the relation between superparamagnetic and ferrimagnetic single domain nanoparticles is clarified in order to choose the appropriate particle size distribution and the role of particle mobility for the relaxation path is discussed. Knowledge of the effect of particle properties for achieving high specific heating power provides necessary guidelines for development of nanoparticles tailored for tumour therapy. Nanoscale heat transfer processes are discussed with respect to the achievable temperature increase in cancer cells. The need to realize a well-controlled temperature distribution in tumour tissue represents the most serious problem of MPH, at present. Visionary concepts of particle administration, in particular by means of antibody targeting, are far from clinical practice, yet. On the basis of current knowledge of treating cancer by thermal damaging, this article elucidates possibilities, prospects, and challenges for establishment of MPH as a standard medical procedure.

[1]  M. Taupitz,et al.  Cardiac magnetic resonance angiography using blood-pool contrast agents: comparison of citrate-coated very small superparamagnetic iron oxide particles with gadofosveset trisodium in pigs. , 2012, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[2]  P. Pouteau,et al.  Passive microfluidic devices for plasma extraction from whole human blood , 2008 .

[3]  D. Faivre,et al.  Biomimetic Magnetite Formation: From Biocombinatorial Approaches to Mineralization Effects , 2014, Langmuir : the ACS journal of surfaces and colloids.

[4]  R. Muller,et al.  Ferrofluids of magnetic multicore nanoparticles for biomedical applications , 2009 .

[5]  P Wust,et al.  Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial , 2007, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[6]  R. B. Frankel,et al.  Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications , 1999, Applied Microbiology and Biotechnology.

[7]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[8]  C. L. Dennis,et al.  Multicore Magnetic Nanoparticles for Magnetic Particle Imaging , 2013, IEEE Transactions on Magnetics.

[9]  Mohammad Hedayati,et al.  The effect of cell cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors? , 2013, Nanomedicine.

[10]  K. Krishnan,et al.  Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. , 2012, Journal of applied physics.

[11]  B. Hamm,et al.  Superparamagnetische Eisenoxidpartikel: Aktueller Stand und zukünftige Entwicklungen , 2003 .

[12]  Arturo Mediano,et al.  Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles , 2010 .

[13]  Frank A. Müller,et al.  Magnetic iron oxide nanopowders produced by CO2 laser evaporation—‘In situ’ coating and particle embedding in a ceramic matrix , 2009 .

[14]  A. Bakuzis,et al.  Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[15]  Gennaro Bellizzi,et al.  On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia , 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[16]  E. Snoeck,et al.  Synthesis, Characterization, and Magnetic Properties of Cobalt Nanoparticles from an Organometallic Precursor , 1996 .

[17]  Peter Wust,et al.  Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. , 2007, European urology.

[18]  S. Dutz,et al.  Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy , 2007 .

[19]  A. Bakuzis,et al.  Aggregate formation on polydisperse ferrofluids: A Monte Carlo analysis , 2005 .

[20]  P. Wust,et al.  Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme , 2010, Journal of Neuro-Oncology.

[21]  Y. Harada,et al.  Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy , 2012, Nature Communications.

[22]  A. K. Petrosyan,et al.  Zero-Field Splitting and g-Values of d8 Ions in a Trigonal Crystal Field , 1986, January 1.

[23]  Bernhard Gleich,et al.  Perspectives on clinical magnetic particle imaging , 2013, Biomedizinische Technik. Biomedical engineering.

[24]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[25]  Kazuo Niira TEMPERATURE DEPENDENCE OF THE MAGNETIZATION OF DYSPROSIUM METAL , 1960 .

[26]  R. Issels,et al.  Hyperthermia in oncology. , 2001 .

[27]  A. Golneshan,et al.  The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method , 2011, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[28]  J. Berret,et al.  Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[29]  D. Eberbeck,et al.  Production and characterisation of magnetic nanoparticles produced by laser evaporation for ferrofluids , 2005 .

[30]  M. Zeisberger,et al.  Magnetic Nanoparticles for Biomedical Heating Applications , 2006 .

[31]  P. Enoksson,et al.  Effective magnetic moment of magnetic multicore nanoparticles , 2009 .

[32]  Kishan Dholakia,et al.  Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes. , 2007, Optics letters.

[33]  M. Bellemann,et al.  Hysteresis losses of magnetic nanoparticle powders in the single domain size range , 2007 .

[34]  Valentyn Novosad,et al.  Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. , 2010, Nature materials.

[35]  Arutselvan Natarajan,et al.  Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF--induced thermoablative therapy for human breast cancer in mice. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[36]  Carlos Rinaldi,et al.  Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia , 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[37]  Rocío Costo,et al.  Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles , 2012 .

[38]  R. T. Gordon,et al.  Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. , 1979, Medical hypotheses.

[39]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[40]  W. Kaiser,et al.  Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia , 1999 .

[41]  Matthias Zeisberger,et al.  Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. , 2009, Journal of magnetism and magnetic materials.

[42]  M. Torres-Lugo,et al.  Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity , 2013, International journal of nanomedicine.

[43]  K. Hynynen,et al.  The effect of blood perfusion rate on the temperature distributions induced by multiple, scanned and focused ultrasonic beams in dogs' kidneys in vivo. , 1989, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[44]  I. Andreu,et al.  Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[45]  S. Barry,et al.  Challenges in the development of magnetic particles for therapeutic applications , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[46]  Dietmar Eberbeck,et al.  Asymmetric flow field-flow fractionation of superferrimagnetic iron oxide multicore nanoparticles , 2012, Nanotechnology.

[47]  D. Schüler Formation of magnetosomes in magnetotactic bacteria. , 1999, Journal of molecular microbiology and biotechnology.

[48]  C. Xu,et al.  Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles , 2008 .

[49]  John B. Weaver,et al.  Fe∕Fe oxide nanocomposite particles with large specific absorption rate for hyperthermia , 2007 .

[50]  Kenneth A. Dawson,et al.  Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts , 2008, Proceedings of the National Academy of Sciences.

[51]  V. S. Bagnato,et al.  Photodynamic therapy induced vascular damage: an overview of experimental PDT , 2013 .

[52]  R. Frankel,et al.  Magnetosome formation in prokaryotes , 2004, Nature Reviews Microbiology.

[53]  J. Marco,et al.  Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit , 2008 .

[54]  A. Mediano,et al.  Specific Absorption Rates and Magnetic Properties of Ferrofluids with Interaction Effects at Low Concentrations , 2010 .

[55]  R. Chantrell,et al.  Particle cluster configuration in magnetic fluids , 1980 .

[56]  L. Trahms,et al.  Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies , 2010, Physics in medicine and biology.

[57]  A microfluidic spiral for size-dependent fractionation of magnetic microspheres , 2012 .

[58]  M. Shliomis,et al.  Theory of the Dynamic Susceptibility of Magnetic Fluids , 2007 .

[59]  T. Hyeon,et al.  One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. , 2005, Angewandte Chemie.

[60]  Yousef Haik,et al.  Size dependent magnetic properties of iron oxide nanoparticles , 2003 .

[61]  H. Tom Soh,et al.  Perspectives on Utilizing Unique Features of Microfluidics Technology for Particle and Cell Sorting , 2009, JALA.

[62]  R. Frankel,et al.  Off-axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1 , 2001 .

[63]  W. Coffey,et al.  Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown , 2012, 1209.0298.

[64]  A. Bhagat,et al.  Continuous particle separation in spiral microchannels using Dean flows and differential migration. , 2008, Lab on a chip.

[65]  B. Stoeber,et al.  Deposition of particles from polydisperse suspensions in microfluidic systems , 2010 .

[66]  S. Coyle,et al.  Magnetic ordering in Co films on stepped Cu(100) surfaces , 1998 .

[67]  R Ivkov,et al.  Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia , 2009, Nanotechnology.

[68]  A. Teja,et al.  Continuous hydrothermal crystallization of α–Fe_2O_3 and Co_3O_4 nanoparticles , 2003 .

[69]  W. Kaiser,et al.  Effects of magnetic thermoablation in muscle tissue using iron oxide particles: an in vitro study. , 2000, Investigative radiology.

[70]  M. A. García,et al.  Correlating Magneto-Structural Properties to Hyperthermia Performance of Highly Monodisperse Iron Oxide Nanoparticles Prepared by a Seeded-Growth Route , 2011 .

[71]  Roberto Cingolani,et al.  Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. , 2013, Nano letters.

[72]  P Wust,et al.  Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. , 1997, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[73]  Raimo Hartmann,et al.  Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge , 2012, Journal of Nanobiotechnology.

[74]  P. Moroz,et al.  Magnetically mediated hyperthermia: current status and future directions , 2002, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[75]  Q. Pankhurst,et al.  Progress in applications of magnetic nanoparticles in biomedicine , 2009 .

[76]  P Reichardt,et al.  Clinical experiences with magnetic drug targeting: a phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. , 1996, Cancer research.

[77]  Ingrid Hilger,et al.  Magnetic multicore nanoparticles for hyperthermia—influence of particle immobilization in tumour tissue on magnetic properties , 2011, Nanotechnology.

[78]  Peter Wust,et al.  Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro , 1999 .

[79]  S. Dutz,et al.  Magnetic core-shell fluorescent pH ratiometric nanosensor using a Stöber coating method. , 2011, Analytica chimica acta.

[80]  S. Takayama,et al.  Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. , 2007, Analytical chemistry.

[81]  J. Walsh,et al.  Cancer therapy with localized hyperthermia using an invasive microwave system. , 1979, The Journal of microwave power.

[82]  Raimo Hartmann,et al.  Temperature: the "ignored" factor at the NanoBio interface. , 2013, ACS nano.

[83]  Y Rabin,et al.  Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? , 2002, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[84]  W. Kaiser,et al.  Physical limits of hyperthermia using magnetite fine particles , 1998 .

[85]  Rajan Jose,et al.  Magnetic Iron Oxide Nanoparticles: Chemical Synthesis and Applications Review , 2013 .

[86]  P. Wust,et al.  Hyperthermia in combined treatment of cancer. , 2002, The Lancet Oncology.

[87]  Chris J. Diederich,et al.  Hyperthermia classic commentary: ‘Arrhenius relationships from the molecule and cell to the clinic’ by William Dewey, Int. J. Hyperthermia, 10:457–483, 1994 , 2009, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[88]  S. Dutz,et al.  The Role of Interactions in Systems of Single Domain Ferrimagnetic Iron Oxide Nanoparticles , 2012 .

[89]  Dirk Schüler,et al.  Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools , 2005 .

[90]  J. Bacri,et al.  Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. , 2012, ACS nano.

[91]  M. Hiraoka,et al.  Preparation of Magnetic Iron Oxide Nanoparticles for Hyperthermia of Cancer in a FeCl2-NaNO3-NaOH Aqueous System , 2011, Journal of biomaterials applications.

[92]  K. Simeonidis,et al.  Size-Dependent Mechanisms in AC Magnetic Hyperthermia Response of Iron-Oxide Nanoparticles , 2012, IEEE Transactions on Magnetics.

[93]  L. Trahms,et al.  LOCALIZATION AND QUANTIFICATION OF MAGNETIC NANOPARTICLES BY MULTICHANNEL MAGNETORELAXOMETRY FOR THERMAL ABLATION STUDIES , 2010 .

[94]  R. Gilchrist,et al.  Selective Inductive Heating of Lymph Nodes , 1957, Annals of surgery.

[95]  F. Guyot,et al.  Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[96]  Manuel Arruebo,et al.  Antibody-conjugated nanoparticles for biomedical applications , 2009 .

[97]  V. Cabuil,et al.  Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia , 2012 .

[98]  Gerhard Müller,et al.  Medizinphysik: Diagnostik und Therapie mit dem Laser , 1999 .

[99]  G. Wilding,et al.  Phase I clinical trial of melphalan and 41.8 degrees C whole-body hyperthermia in cancer patients. , 1993, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[100]  Jun Ding,et al.  Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. , 2012, Biomaterials.

[101]  L. Trahms,et al.  Experimental investigation of dipolar interaction in suspensions of magnetic nanoparticles , 2011 .

[102]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[103]  A. Jordan,et al.  Clinical applications of magnetic nanoparticles for hyperthermia , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[104]  Damien Faivre,et al.  An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria , 2006, Nature.

[105]  Charles R. Sullivan,et al.  Limits of localized heating by electromagnetically excited nanoparticles , 2006 .

[106]  Wei Li,et al.  Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia , 2011, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[107]  S. Dutz,et al.  Magnetic and fluorescent core–shell nanoparticles for ratiometric pH sensing , 2011, Nanotechnology.

[108]  Philip W. Anderson,et al.  Antiferromagnetism. Theory of Superexchange Interaction , 1950 .

[109]  S. Barry,et al.  Phagocytes mediate targeting of iron oxide nanoparticles to tumors for cancer therapy. , 2013, Integrative biology : quantitative biosciences from nano to macro.

[110]  W. Dewey,et al.  Arrhenius relationships from the molecule and cell to the clinic , 2009, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[111]  Stefan Odenbach,et al.  Ferrofluids: Magnetically Controllable Fluids And Their Applications , 2010 .

[112]  W Andrä,et al.  Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. , 2001, Radiology.

[113]  Linderoth,et al.  Finite-size modifications of the magnetic properties of clusters. , 1993, Physical review. B, Condensed matter.

[114]  M. Yamada,et al.  Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. , 2005, Lab on a chip.

[115]  K. Fabian,et al.  Three-dimensional micromagnetic calculations for naturally shaped magnetite: Octahedra and magnetosomes , 2005 .

[116]  John C Bischof,et al.  Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[117]  D. Borca-Tasciuc,et al.  Effect of surface modification on magnetization of iron oxide nanoparticle colloids. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[118]  Matthias Zeisberger,et al.  Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia , 2010, Nanotechnology.

[119]  Q. Pankhurst,et al.  Size and Concentration Effects on High Frequency Hysteresis of Iron Oxide Nanoparticles , 2007, IEEE Transactions on Magnetics.

[120]  M. Sierka,et al.  Control of the Crystal Phase Composition of FexOy Nanopowders Prepared by CO2 Laser Vaporization , 2013 .

[121]  Annett Rechtenbach,et al.  Synthesis and physical characterization of magnetite nanoparticles for biomedical applications , 2008 .

[122]  J. Zee,et al.  Heating the patient: a promising approach? , 2002 .

[123]  Matthias Zeisberger,et al.  Magnetic heating effect of nanoparticles with different sizes and size distributions , 2013 .

[124]  Rodrigues P.A.M.,et al.  Laser-induced Heating Of Nanocrystals Embedded In Glass Matrices , 1996 .

[125]  W. Weitschies,et al.  The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia , 2006 .

[126]  M. Bellemann,et al.  Magnetic iron oxide nanopowders produced by CO2 laser evaporation , 2007 .

[127]  Nicole Pamme,et al.  Continuous flow separations in microfluidic devices. , 2007, Lab on a chip.

[128]  Werner A. Kaiser,et al.  Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia , 2004 .

[129]  Werner A. Kaiser,et al.  Magnetische Thermotherapie von Tumoren der Brust: ein experimenteller Therapieansatz , 2005 .

[130]  G. Müller,et al.  Diagnostik und Therapie mit dem Laser , 1999 .

[131]  W. Nyborg Solutions of the bio-heat transfer equation. , 1988, Physics in medicine and biology.

[132]  M. Muhammed,et al.  Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. , 2008, Journal of the American Chemical Society.

[133]  Peter Wust,et al.  Magnetic nanoparticle hyperthermia for prostate cancer , 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[134]  L. Trahms,et al.  Time domain study of Brownian and Néel relaxation in ferrofluids , 1995 .

[135]  Takashi Nakagawa,et al.  Suitability of commercial colloids for magnetic hyperthermia , 2009 .

[136]  M. Mahmoudi,et al.  Significance of cell "observer" and protein source in nanobiosciences. , 2013, Journal of colloid and interface science.

[137]  Stefan Odenbach,et al.  Magnetic separation of ferrofluids , 2002 .

[138]  Ivan P. Parkin,et al.  Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia , 2009 .

[139]  O Sandre,et al.  Size distribution of superparamagnetic particles determined by magnetic sedimentation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[140]  J. Kováč,et al.  Hyperthermic Effect in Suspension of Magnetosomes Prepared by Various Methods , 2013, IEEE Transactions on Magnetics.

[141]  Andreas Briel,et al.  Characterization of superparamagnetic iron oxide nanoparticles by asymmetrical flow-field-flow-fractionation. , 2008, Nanomedicine.

[142]  Theodore L. DeWeese,et al.  Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields , 2011 .

[143]  M. Zborowski,et al.  Quadrupole magnetic field-flow fractionation: A novel technique for the characterization of magnetic nanoparticles , 2007 .

[144]  R. Costo,et al.  Progress in the preparation of magnetic nanoparticles for applications in biomedicine , 2003, Magnetic Nanoparticles in Biosensing and Medicine.

[145]  Jintian Tang,et al.  Effects of magnetic induction hyperthermia and radiotherapy alone or combined on a murine 4T1 metastatic breast cancer model , 2011, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[146]  P. J. Hoopes,et al.  Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia , 2003, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[147]  Kevin Braeckmans,et al.  Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. , 2013, ACS nano.

[148]  S. Dutz,et al.  Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[149]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[150]  D. Berkov Numerical simulations of quasistatic remagnetization processes in fine magnetic particle systems , 1996 .

[151]  M. Ardenne Principles and concept 1993 of the Systemic Cancer Multistep Therapy (sCMT). Extreme whole-body hyperthermia using the infrared-A technique IRATHERM 2000--selective thermosensitisation by hyperglycemia--circulatory back-up by adapted hyperoxemia. , 1994 .

[152]  C. Alexiou,et al.  Locoregional cancer treatment with magnetic drug targeting. , 2000, Cancer research.

[153]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[154]  Andreas Manz,et al.  On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow , 2006 .

[155]  Maciej Zborowski,et al.  Continuous cell separation using novel magnetic quadrupole flow sorter , 1999 .

[156]  P. Wust,et al.  The cellular and molecular basis of hyperthermia. , 2002, Critical reviews in oncology/hematology.

[157]  N. Borrelli,et al.  Hysteresis heating for the treatment of tumours. , 1984, Physics in medicine and biology.

[158]  Gang Bao,et al.  Magnetic nanoparticle probes , 2005 .

[159]  J. Bulte,et al.  Short‐ vs. long‐circulating magnetoliposomes as bone marrow‐seeking MR contrast agents , 1999, Journal of magnetic resonance imaging : JMRI.

[160]  Liang Zhu,et al.  Enhancement in treatment planning for magnetic nanoparticle hyperthermia: Optimization of the heat absorption pattern , 2009, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[161]  Thomas Laurell,et al.  Chip integrated strategies for acoustic separation and manipulation of cells and particles. , 2007, Chemical Society reviews.

[162]  Angel Orte,et al.  Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. , 2013, ACS nano.

[163]  Forrest M Kievit,et al.  A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. , 2009, Biomaterials.

[164]  T. Oda,et al.  Minimally required heat doses for various tumour sizes in induction heating cancer therapy determined by computer simulation using experimental data , 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[165]  Dev P. Chakraborty,et al.  Usable Frequencies in Hyperthermia with Thermal Seeds , 1984, IEEE Transactions on Biomedical Engineering.

[166]  Robert Ivkov,et al.  Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy , 2007 .

[167]  Carlos Rinaldi,et al.  EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. , 2011, ACS nano.

[168]  Abiche H. Dewilde,et al.  Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia , 2011, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[169]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[170]  T. Heinze,et al.  Amino-functionalized cellulose nanoparticles: preparation, characterization, and interactions with living cells. , 2012, Macromolecular bioscience.

[171]  Gang Chen,et al.  Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles , 1996 .

[172]  R Weissleder,et al.  Superparamagnetic iron oxide: pharmacokinetics and toxicity. , 1989, AJR. American journal of roentgenology.

[173]  P R Harvey,et al.  Modular gradient coil: A new concept in high‐performance whole‐body gradient coil design , 1999, Magnetic resonance in medicine.

[174]  Robert N. Muller,et al.  Influence of dextran coating on the magnetic behaviour of iron oxide nanoparticles , 2007 .

[175]  W. Kaiser,et al.  Application of magnetite ferrofluids for hyperthermia , 1999 .

[176]  S. Dutz,et al.  Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[177]  R. Ivkov,et al.  Development of Tumor Targeting Bioprobes (111In-Chimeric L6 Monoclonal Antibody Nanoparticles) for Alternating Magnetic Field Cancer Therapy , 2005, Clinical Cancer Research.

[178]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[179]  Paolo Maccarini,et al.  Thermal dose fractionation affects tumour physiological response , 2012, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[180]  Nguyen T. K. Thanh,et al.  Putting Therapeutic Nanoparticles Where They Need to Go by Magnet Systems Design and Control , 2012 .

[181]  R. Frankel,et al.  Electron microscopic studies of magnetosomes in magnetotactic bacteria , 1994, Microscopy research and technique.

[182]  G. Denardo,et al.  Pharmacokinetic Characterization in Xenografted Mice of a Series of First-Generation Mimics for HLA-DR Antibody, Lym-1, as Carrier Molecules to Image and Treat Lymphoma , 2007, Journal of Nuclear Medicine.

[183]  L. Taylor,et al.  Implantable radiators for cancer therapy by microwave hyperthermia , 1980, Proceedings of the IEEE.

[184]  H. Leveen,et al.  Tumor eradication by radiofrequency therapy. Responses in 21 patients. , 1976, JAMA.

[185]  C. Grüttner,et al.  Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[186]  Robert N. Muller,et al.  Measurement of the distribution parameters of size and magnetic properties of magnetic nanoparticles for medical applications , 2009 .

[187]  R. Gerber,et al.  Magnetic filtration of ultra-fine particles , 1984 .

[188]  D. Borca-Tasciuc,et al.  Anomalously High Specific Absorption Rate in Bioaffine Ligand-Coated Iron Oxide Nanoparticle Suspensions , 2013, IEEE Transactions on Magnetics.

[189]  J. Strohbehn,et al.  A Method for Measurement of the Permittivity of Thin Samples , 1979 .

[190]  Liwei Lin,et al.  Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. , 2011, ACS nano.

[191]  O. Hansen,et al.  Magnetic separation in microfluidic systems using microfabricated electromagnets—experiments and simulations , 2005 .

[192]  M. Morbidelli,et al.  Integrated multiplatform method for in vitro quantitative assessment of cellular uptake for fluorescent polymer nanoparticles , 2014, Nanotechnology.

[193]  D Rickert,et al.  [Cell proliferation and cellular activity of primary cell cultures of the oral cavity after cell seeding on the surface of a degradable, thermoplastic block copolymer]. , 2005, Biomedizinische Technik. Biomedical engineering.

[194]  D. Dunlop,et al.  Magnetic Properties of Hydrothermally Recrystallized Magnetite Crystals , 1987, Science.

[195]  H. Bagaria,et al.  Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment , 2005, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[196]  Peter Wust,et al.  Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. , 2004, Medical physics.

[197]  Temperature field computation for radiofrequency heating of deep-seated tumors. , 1986, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[198]  I. Brezovich,et al.  Hyperthermia with implanted electrodes. , 1981, Medical physics.

[199]  S. Khalafalla,et al.  Preparation of dilution-stable aqueous magnetic fluids , 1980 .

[200]  Stefan Tenzer,et al.  Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. , 2011, ACS nano.

[201]  Jiyeon Kwak,et al.  Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine , 2012 .

[202]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[203]  Ingrid Hilger,et al.  Thermal Ablation of Tumors Using Magnetic Nanoparticles: An In Vivo Feasibility Study , 2002, Investigative radiology.

[204]  M. Ibarra,et al.  Cell death induced by AC magnetic fields and magnetic nanoparticles: Current state and perspectives , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[205]  S. Järås,et al.  Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[206]  T. Kroll,et al.  Magnetic nanoparticles coated with carboxymethylated polysaccharide shells—Interaction with human cells , 2009 .

[207]  Heng Huang,et al.  Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. , 2010, Nature nanotechnology.

[208]  K. Hamad-Schifferli,et al.  Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna , 2002, Nature.

[209]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[210]  Christoph Alexiou,et al.  Magnetic Drug Targeting Reduces the Chemotherapeutic Burden on Circulating Leukocytes , 2013, International journal of molecular sciences.

[211]  Peter Enoksson,et al.  Monte Carlo simulation of magnetic multi-core nanoparticles , 2009 .

[212]  Robert N. Muller,et al.  Investigations on magnetic particles prepared by cyclic growth , 2011 .

[213]  P Jack Hoopes,et al.  Magnetic nanoparticle hyperthermia enhancement of cisplatin chemotherapy cancer treatment , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.