Optimality conditions for mixed discrete bilevel optimization problems

Abstract In this article, we consider bilevel optimization problems with discrete lower level and continuous upper level problems. Taking into account both approaches (optimistic and pessimistic) which have been developed in the literature to deal with this type of problem, we derive some conditions for the existence of solutions. In the case where the lower level is a parametric linear problem, the bilevel problem is transformed into a continuous one. After that, we are able to discuss local optimality conditions using tools of variational analysis for each of the different approaches. Finally, we consider a simple application of our results namely the bilevel programming problem with the minimum spanning tree problem in the lower level.

[1]  Samarathunga M. Dassanayaka Methods Of Variational Analysis In Pessimistic Bilevel Programming , 2010 .

[2]  Jana Vogel Optimization With Multivalued Mappings Theory Applications And Algorithms , 2016 .

[3]  B. Mordukhovich,et al.  New necessary optimality conditions in optimistic bilevel programming , 2007 .

[4]  Gilles Savard,et al.  The steepest descent direction for the nonlinear bilevel programming problem , 1990, Oper. Res. Lett..

[5]  N. Gadhi,et al.  Necessary Optimality Conditions for Bilevel Optimization Problems Using Convexificators , 2006, J. Glob. Optim..

[6]  S. Lucidi,et al.  Exact Penalty Functions for Nonlinear Integer Programming Problems , 2010 .

[7]  D. Fanghänel Optimality criteria for bilevel programming problems using the radial subdifferential , 2006 .

[8]  Anulekha Dhara,et al.  Optimality Conditions in Convex Optimization: A Finite-Dimensional View , 2011 .

[9]  L. N. Vicente,et al.  Discrete linear bilevel programming problem , 1996 .

[10]  Jane J. Ye Constraint Qualifications and KKT Conditions for Bilevel Programming Problems , 2006, Math. Oper. Res..

[11]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[12]  Jen-Chih Yao,et al.  Variational analysis and generalized differentiation in optimization and control : in honor of Boris S. Mordukhovich , 2010 .

[13]  Alain B. Zemkoho,et al.  Necessary optimality conditions in pessimistic bilevel programming , 2014 .

[14]  S. Dempe,et al.  Bilevel programming with discrete lower level problems , 2009 .

[15]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[16]  Stephan Dempe,et al.  The bilevel programming problem: reformulations, constraint qualifications and optimality conditions , 2013, Math. Program..

[17]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[18]  N. D. Yen,et al.  Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming , 2006 .

[19]  Boris S. Mordukhovich,et al.  Sensitivity Analysis for Two-Level Value Functions with Applications to Bilevel Programming , 2012, SIAM J. Optim..

[20]  Jirí V. Outrata,et al.  A note on the usage of nondifferentiable exact penalties in some special optimization problems , 1988, Kybernetika.

[21]  Boris S. Mordukhovich,et al.  Subgradients of marginal functions in parametric mathematical programming , 2008, Math. Program..

[22]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[23]  Stephan Dempe,et al.  Optimality Conditions for a Simple Convex Bilevel Programming Problem , 2010 .

[24]  C. R. Bector,et al.  Principles of Optimization Theory , 2005 .

[25]  Jane J. Ye,et al.  A note on optimality conditions for bilevel programming problems , 1997 .

[26]  Stephan Dempe,et al.  The Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs , 2011, J. Optim. Theory Appl..

[27]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[28]  Nataliya I. Kalashnykova,et al.  Optimality conditions for bilevel programming problems , 2006 .

[29]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[30]  R. Henrion,et al.  On calmness conditions in convex bilevel programming , 2011 .

[31]  Diana Fanghänel Optimality conditions for a bilevel matroid problem , 2011, J. Comb. Optim..

[32]  Stephan Dempe,et al.  Solving discrete linear bilevel optimization problems using the optimal value reformulation , 2017, J. Glob. Optim..