A Random Forest Assisted Evolutionary Algorithm for Data-Driven Constrained Multi-Objective Combinatorial Optimization of Trauma Systems for publication
暂无分享,去创建一个
Many real-world optimization problems can be
solved by using the data-driven approach only, simply because no
analytic objective functions are available for evaluating candidate
solutions. In this work, we address a class of expensive datadriven
constrained multi-objective combinatorial optimization
problems, where the objectives and constraints can be calculated
only on the basis of large amount of data. To solve this class
of problems, we propose to use random forests and radial basis
function networks as surrogates to approximate both objective
and constraint functions. In addition, logistic regression models
are introduced to rectify the surrogate-assisted fitness evaluations
and a stochastic ranking selection is adopted to further reduce
the influences of the approximated constraint functions. Three
variants of the proposed algorithm are empirically evaluated on
multi-objective knapsack benchmark problems and two realworld
trauma system design problems. Experimental results
demonstrate that the variant using random forest models as
the surrogates are effective and efficient in solving data-driven
constrained multi-objective combinatorial optimization problems.