A note on the de la Garza phenomenon for locally optimal designs

The celebrated de la Garza phenomenon states that for a polynomial regression model of degree p — 1 any optimal design can be based on at most p design points. In a remarkable paper, Yang [Ann. Statist. 38 (2010) 2499― 2524] showed that this phenomenon exists in many locally optimal design problems for nonlinear models. In the present note, we present a different view point on these findings using results about moment theory and Chebyshev systems. In particular, we show that this phenomenon occurs in an even larger class of models than considered so far.

[1]  Christine M. Anderson-Cook,et al.  Functional Approach to Optimal Experimental Design , 2007 .

[2]  Holger Dette,et al.  Efficient design of experiments in the Monod model , 2003 .

[3]  Lorens A. Imhof,et al.  Maximin designs for exponential growth models and heteroscedastic polynomial models , 2001 .

[4]  Viatcheslav B. Melas,et al.  Functional Approach to Optimal Experimental Design (Lecture Notes in Statistics) , 2005 .

[5]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[6]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[7]  W. J. Studden,et al.  Optimal Experimental Designs , 1966 .

[8]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[9]  H. Dette,et al.  A general approach to D-optimal designs for weighted univariate polynomial regression models , 2010 .

[10]  David A. Ratkowsky,et al.  Handbook of nonlinear regression models , 1990 .

[11]  I. Ford,et al.  The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .

[12]  S. Silvey Optimal Design: An Introduction to the Theory for Parameter Estimation , 1980 .

[13]  Holger Dette,et al.  OPTIMAL BAYESIAN DESIGNS FOR MODELS WITH PARTIALLY SPECIFIED HETEROSCEDASTIC STRUCTURE , 1996 .

[14]  Holger Dette,et al.  Optimal Designs for Dose-Finding Studies , 2008 .

[15]  John Stufken,et al.  SUPPORT POINTS OF LOCALLY OPTIMAL DESIGNS FOR NONLINEAR MODELS WITH TWO PARAMETERS , 2009, 0903.0728.

[16]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[17]  Min Yang,et al.  On the de la Garza phenomenon , 2009, 0912.3861.

[18]  Drew Seils,et al.  Optimal design , 2007 .

[19]  M. Ghosh,et al.  Design Issues for Generalized Linear Models: A Review , 2006, math/0701088.

[20]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[21]  A. D. L. Garza,et al.  Spacing of Information in Polynomial Regression , 1954 .

[22]  Holger Dette,et al.  Designing Experiments with Respect to ‘Standardized’ Optimality Criteria , 1997 .

[23]  Andrej Pázman,et al.  Foundations of Optimum Experimental Design , 1986 .

[24]  Andrej Pázman,et al.  Applications of necessary and sufficient conditions for maximin efficient designs , 1998 .

[25]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[26]  E. Walter,et al.  Robust experiment design via stochastic approximation , 1985 .

[27]  A. S. Hedayat,et al.  LOCALLY D-OPTIMAL DESIGNS BASED ON A CLASS OF COMPOSED MODELS RESULTED FROM BLENDING EMAX AND ONE-COMPARTMENT MODELS ⁄ , 2008, 0803.2108.

[28]  Lorens A. Imhof,et al.  E-optimal designs for rational models , 1996 .