GP-HMAT: Scalable, ${O}(n\log(n))$ Gaussian Process Regression with Hierarchical Low-Rank Matrices
暂无分享,去创建一个
Shandian Zhe | Akil Narayan | Vahid Keshavarzzadeh | Robert M. Kirby | Shandian Zhe | Vahid Keshavarzzadeh | A. Narayan
[1] Irad Yavneh,et al. Non-Galerkin Multigrid Based on Sparsified Smoothed Aggregation , 2015, SIAM J. Sci. Comput..
[2] Per-Gunnar Martinsson,et al. A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..
[3] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[4] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[5] Eric Darve,et al. An O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O (N \log N)$$\end{document} Fast Direct Solver fo , 2013, Journal of Scientific Computing.
[6] Ameet Talwalkar,et al. Ensemble Nystrom Method , 2009, NIPS.
[7] Wei Chu,et al. A matching pursuit approach to sparse Gaussian process regression , 2005, NIPS.
[8] Jianlin Xia,et al. Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..
[9] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[10] Robert Michael Kirby,et al. Multilevel Designed Quadrature for Partial Differential Equations with Random Inputs , 2021, SIAM J. Sci. Comput..
[11] Mihai Anitescu,et al. Scalable Gaussian Process Computations Using Hierarchical Matrices , 2018, Journal of Computational and Graphical Statistics.
[12] Alle-Jan van der Veen,et al. Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..
[13] HackbuschW.. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .
[14] V. Rokhlin,et al. A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.
[15] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[16] Boyan Stefanov Lazarov,et al. On multigrid-CG for efficient topology optimization , 2014 .
[17] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[18] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[19] Jianlin Xia,et al. Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..
[20] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[21] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .
[22] Robert Michael Kirby,et al. Numerical Integration in Multiple Dimensions with Designed Quadrature , 2018, SIAM J. Sci. Comput..
[23] Wolfgang Hackbusch,et al. Construction and Arithmetics of H-Matrices , 2003, Computing.
[24] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[25] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[26] Alexander J. Smola,et al. Sparse Greedy Gaussian Process Regression , 2000, NIPS.
[27] Per-Gunnar Martinsson,et al. A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..
[28] Marian Brezina,et al. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.
[29] Per-Gunnar Martinsson,et al. On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..
[30] Carl E. Rasmussen,et al. Rates of Convergence for Sparse Variational Gaussian Process Regression , 2019, ICML.
[31] Jie Chen,et al. Linear-Cost Covariance Functions for Gaussian Random Fields , 2017, Journal of the American Statistical Association.
[32] Alex Townsend,et al. A generalization of the randomized singular value decomposition , 2021, ICLR.
[33] Mechthild Stoer,et al. A simple min-cut algorithm , 1997, JACM.
[34] John Wang Montclair. Second Edition , 2004 .
[35] Jianlin Xia,et al. Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..
[36] A. Gelfand,et al. Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[37] Petros Drineas,et al. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..
[38] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[39] Luke N. Olson,et al. Exposing Fine-Grained Parallelism in Algebraic Multigrid Methods , 2012, SIAM J. Sci. Comput..
[40] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[41] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[42] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[43] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[44] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[45] Lexing Ying,et al. Fast construction of hierarchical matrix representation from matrix-vector multiplication , 2009, J. Comput. Phys..
[46] Max Gunzburger,et al. A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.
[47] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[48] Houman Owhadi,et al. Sparse Cholesky factorization by Kullback-Leibler minimization , 2020, SIAM J. Sci. Comput..