A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data

Abstract In this work, we propose a cost-effective approach allowing one to evaluate the acoustic field generated by a turbulent jet. A turbulence-resolving simulation of an incompressible turbulent round jet is performed for a Reynolds number equal to 460 , 000 thanks to the massively parallel high-order flow solver Incompact3d. Then a formulation of Lighthill's solution is derived, using an azimuthal Fourier series expansion and a compactness assumption in the radial direction. The formulation then reduces to a line source theory, which is cost-effective to implement and evaluate. The accuracy of the radial compactness assumption, however, depends on the Strouhal number, the Mach number, the observation elevation angle, and the radial extent of the source. Preliminary results are showing that the proposed method approaches the experimental overall sound pressure level by less than 4 dB for aft emission angles below 50°.

[1]  S. Laizet,et al.  Skin-friction drag reduction in a channel flow with streamwise-aligned plasma actuators , 2017 .

[2]  P. Moin,et al.  On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows , 1997 .

[3]  J. Freund Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9 , 2001, Journal of Fluid Mechanics.

[4]  Véronique Fortuné,et al.  LES of a turbulent jet impinging on a heated wall using high-order numerical schemes , 2014 .

[5]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[6]  Jonathan B. Freund,et al.  Noise-source turbulence statistics and the noise from a Mach 0.9 jet , 2003 .

[7]  T. Lund,et al.  Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations , 1998 .

[8]  Sébastien Candel,et al.  Computation of jet mixing noise due to coherent structures: the plane jet case , 1997, Journal of Fluid Mechanics.

[9]  F. Margnat Hybrid prediction of the aerodynamic noise radiated by a rectangular cylinder at incidence , 2015 .

[10]  J. Vassilicos,et al.  Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient , 2014, Journal of Fluid Mechanics.

[11]  Sylvain Laizet,et al.  Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation , 2011, J. Comput. Phys..

[12]  Peter Jordan,et al.  Scattering of turbulent-jet wavepackets by a swept trailing edge. , 2016, The Journal of the Acoustical Society of America.

[13]  Tim Colonius,et al.  Axisymmetric superdirectivity in subsonic jets , 2011 .

[14]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[15]  J. Robinet,et al.  The influence of a pressure wavepacket's characteristics on its acoustic radiation. , 2015, The Journal of the Acoustical Society of America.

[16]  Sanjiva K. Lele,et al.  On the growth and propagation of linear instability waves in compressible turbulent jets , 2009 .

[17]  M. Reeuwijk,et al.  Robust and accurate open boundary conditions for incompressible turbulent jets and plumes , 2013 .

[18]  Dominik Obrist,et al.  Directivity of acoustic emissions from wave packets to the far field , 2009, Journal of Fluid Mechanics.

[19]  D. G. Crighton,et al.  Shear-layer pressure fluctuations and superdirective acoustic sources , 1990, Journal of Fluid Mechanics.

[20]  Ning Li,et al.  Incompact3d: A powerful tool to tackle turbulence problems with up to O(105) computational cores , 2011 .

[21]  Véronique Fortuné,et al.  An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise. , 2010, The Journal of the Acoustical Society of America.

[22]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[23]  Nadeem Hasan,et al.  On the outflow boundary condition for external incompressible flows: A new approach , 2005 .

[24]  J. E. Ffowcs Williams,et al.  The noise from the large-scale structure of a jet , 1978, Journal of Fluid Mechanics.

[25]  E. Lamballais,et al.  Numerical Study of Mach Number and Thermal Effects on Sound Radiation by a Mixing Layer , 2012 .

[26]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[27]  Sanjiva K. Lele,et al.  Large eddy simulation for jet noise: the importance of getting the boundary layer right , 2015 .

[28]  H. V. Fuchs,et al.  On turbulence and noise of an axisymmetric shear flow , 1975, Journal of Fluid Mechanics.

[29]  Sanjiva K. Lele,et al.  Low-frequency sound sources in high-speed turbulent jets , 2008, Journal of Fluid Mechanics.

[30]  S. Laizet,et al.  High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents , 2015 .

[31]  Sylvain Laizet,et al.  Numerical dissipation vs. subgrid-scale modelling for large eddy simulation , 2017, J. Comput. Phys..

[32]  Sylvain Laizet,et al.  High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy , 2009, J. Comput. Phys..

[33]  A. Michalke,et al.  A Wave model for Sound Generation in Circular Jets , 1970 .

[34]  Anurag Agarwal,et al.  Jittering wave-packet models for subsonic jet noise , 2011 .

[35]  Dan S. Henningson,et al.  The Fringe Region Technique and the Fourier Method Used in the Direct Numerical Simulation of Spatially Evolving Viscous Flows , 1999, SIAM J. Sci. Comput..

[36]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  S. Laizet,et al.  Numerical investigation of plasma-controlled turbulent jets for mixing enhancement , 2018 .

[38]  J. C. Vassilicos,et al.  Wall shear stress fluctuations: Mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer , 2017 .

[39]  Chih-Ming Ho,et al.  Perturbed Free Shear Layers , 1984 .

[40]  T. Colonius,et al.  Wave Packets and Turbulent Jet Noise , 2013 .

[41]  Joel Delville,et al.  Educing the source mechanism associated with downstream radiation in subsonic jets , 2012, Journal of Fluid Mechanics.

[42]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[43]  Khairul Q. Zaman,et al.  The ‘preferred mode’ of the axisymmetric jet , 1981, Journal of Fluid Mechanics.

[44]  Clifford A. Brown,et al.  Parametric Testing of Chevrons on Single Flow Hot Jets , 2004 .

[45]  Sylvain Laizet,et al.  A DNS study of jet control with microjets using an immersed boundary method , 2014 .

[46]  X. Gloerfelt,et al.  On compressibility assumptions in aeroacoustic integrals: a numerical study with subsonic mixing layers. , 2014, The Journal of the Acoustical Society of America.

[47]  Tim Colonius,et al.  Wavepackets in the velocity field of turbulent jets , 2012, Journal of Fluid Mechanics.