E2PN: Efficient SE(3)-Equivariant Point Network

This paper proposes a convolution structure for learning SE(3)-equivariant features from 3D point clouds. It can be viewed as an equivariant version of kernel point convolutions (KPConv), a widely used convolution form to process point cloud data. Compared with existing equivariant networks, our design is simple, lightweight, fast, and easy to be integrated with existing task-specific point cloud learning pipelines. We achieve these desirable properties by combining group convolutions and quotient representations. More specifically, we discretize SO(3) to finite groups for their simplicity while using SO(2) as the stabilizer subgroup to form spherical quotient feature fields to save computations. We also propose a permutation layer to recover SO(3) features from spherical features to preserve the capacity to distinguish rotations. Experiments show that our method achieves comparable or superior performance in various tasks while consuming much less memory and running faster than existing work. The proposed method can foster the adoption of equivariant feature learning in practical applications based on point clouds and inspire future developments of equivariant feature learning for real-world applications.

[1]  Kostas Daniilidis,et al.  Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaces , 2022, ICML.

[2]  Minsu Cho,et al.  Self-Supervised Equivariant Learning for Oriented Keypoint Detection , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Suha Kwak,et al.  Reflection and Rotation Symmetry Detection via Equivariant Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Vincent Sitzmann,et al.  Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation , 2021, 2022 International Conference on Robotics and Automation (ICRA).

[5]  S. Lucey,et al.  Enabling Equivariance for Arbitrary Lie Groups , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Elise van der Pol,et al.  Geometric and Physical Quantities improve E(3) Equivariant Message Passing , 2021, ICLR.

[7]  Jonathan P. Mailoa,et al.  E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials , 2021, Nature Communications.

[8]  Maurice Weiler,et al.  A Program to Build E(N)-Equivariant Steerable CNNs , 2022, ICLR.

[9]  Huei Peng,et al.  Correspondence-Free Point Cloud Registration with SO(3)-Equivariant Implicit Shape Representations , 2021, CoRL.

[10]  Andrea Tagliasacchi,et al.  Vector Neurons: A General Framework for SO(3)-Equivariant Networks , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  Andrew Gordon Wilson,et al.  A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups , 2021, ICML.

[12]  Hao Li,et al.  Equivariant Point Network for 3D Point Cloud Analysis , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Yee Whye Teh,et al.  LieTransformer: Equivariant self-attention for Lie Groups , 2020, ICML.

[14]  K. Schindler,et al.  PREDATOR: Registration of 3D Point Clouds with Low Overlap , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Maurice Weiler,et al.  A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels , 2020, ICLR.

[16]  Fabian B. Fuchs,et al.  SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks , 2020, NeurIPS.

[17]  Siyu Zhu,et al.  End-to-End Learning Local Multi-View Descriptors for 3D Point Clouds , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Pavel Izmailov,et al.  Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data , 2020, ICML.

[19]  Emanuele Menegatti,et al.  Quaternion Equivariant Capsule Networks for 3D Point Clouds , 2019, ECCV.

[20]  Y. Lipman,et al.  On Universal Equivariant Set Networks , 2019, ICLR.

[21]  E. Bekkers B-Spline CNNs on Lie Groups , 2019, ICLR.

[22]  Maurice Weiler,et al.  General E(2)-Equivariant Steerable CNNs , 2019, NeurIPS.

[23]  Gabriel Peyré,et al.  Universal Invariant and Equivariant Graph Neural Networks , 2019, NeurIPS.

[24]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  Max Welling,et al.  Gauge Equivariant Convolutional Networks and the Icosahedral CNN 1 , 2019 .

[26]  Andreas Wieser,et al.  The Perfect Match: 3D Point Cloud Matching With Smoothed Densities , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Maurice Weiler,et al.  A General Theory of Equivariant CNNs on Homogeneous Spaces , 2018, NeurIPS.

[28]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[29]  Kostas Daniilidis,et al.  Learning SO(3) Equivariant Representations with Spherical CNNs , 2017, International Journal of Computer Vision.

[30]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[31]  Slobodan Ilic,et al.  PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors , 2018, ECCV.

[32]  Max Welling,et al.  3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data , 2018, NeurIPS.

[33]  Gabriel J. Brostow,et al.  CubeNet: Equivariance to 3D Rotation and Translation , 2018, ECCV.

[34]  Taco Cohen,et al.  3D G-CNNs for Pulmonary Nodule Detection , 2018, ArXiv.

[35]  Maurice Weiler,et al.  Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks) , 2018, ArXiv.

[36]  Li Li,et al.  Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds , 2018, ArXiv.

[37]  Max Welling,et al.  HexaConv , 2018, 1803.02108.

[38]  Risi Kondor,et al.  On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups , 2018, ICML.

[39]  Slobodan Ilic,et al.  PPFNet: Global Context Aware Local Features for Robust 3D Point Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[40]  Max Welling,et al.  Spherical CNNs , 2018, ICLR.

[41]  Vladlen Koltun,et al.  Learning Compact Geometric Features , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[42]  Max Welling,et al.  Convolutional Networks for Spherical Signals , 2017, ArXiv.

[43]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[44]  Max Welling,et al.  Steerable CNNs , 2016, ICLR.

[45]  Stephan J. Garbin,et al.  Harmonic Networks: Deep Translation and Rotation Equivariance , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Max Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[50]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[52]  A. Machi,et al.  Induced representations and Mackey theory , 2009 .

[53]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .