Transient chaos in room acoustics.

The decay of sound in an auditorium due to absorption is central to the theory and practice of room acoustics. Within geometrical acoustics, this problem involves the partial trapping of chaotic ray trajectories in billiards, hence transient chaos. We first present a theoretical and numerical analysis of the decay of rays in 2-D chaotic billiards (2-D room acoustic models) and show that the existence of fluctuations (in the mean-free path and in the rate of phase space exploration) leads to modifications from the standard statistical theory. An ergodic wave theory of room acoustics based on a wave formulation is then discussed and tested by direct numerical calculations of the eigenmodes in 2-D billiards. Finally, we present a semiclassical calculation of the acoustic Green's functions in the time domain, based on a summation over rays, viewed as generalized wave impulses, and successfully compare its predictions with a direct numerical integration of the wave equation. This formalism provides a framework to link the geometrical ray description to the ergodic wave theory.

[1]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[2]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .

[3]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[4]  D. Sornette,et al.  Test of Sabine’s reverberation time in ergodic auditoriums within geometrical acoustics , 1990 .

[5]  W. B. Joyce,et al.  Sabine’s reverberation time and ergodic auditoriums , 1975 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[8]  Role of the absorption distribution and generalization of exponential reverberation law in chaotic rooms , 1993 .

[9]  Asymptotic modal analysis for sound fields of a reverberant chamber , 1992 .

[10]  Bauer,et al.  Bauer and Bertsch reply. , 1991, Physical review letters.

[11]  Bailin Hao Experimental study and characterization of chaos , 1990 .

[12]  Robert B. Newman,et al.  Collected Papers on Acoustics , 1927 .

[13]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[14]  M. Berry,et al.  Regularity and chaos in classical mechanics, illustrated by three deformations of a circular 'billiard' , 1981 .

[15]  E. N. Gilbert,et al.  An iterative calculation of auditorium reverberation , 1981 .

[16]  D. Sornette,et al.  Quantum chaos and Sabine's law of reverberation in ergodic rooms , 1991 .

[17]  Bauer,et al.  Decay of ordered and chaotic systems. , 1990, Physical review letters.

[18]  T. Ericson FLUCTUATIONS OF NUCLEAR CROSS SECTIONS IN THE "CONTINUUM" REGION , 1960 .

[19]  E. Gilbert Ray statistics in reverberation , 1988 .

[20]  Philip M. Morse,et al.  Sound Waves in Rooms , 1944 .

[21]  B. Mityagin Convergence and divergence of Fourier integrals in the Sobolev-spaces pair , 1974 .

[22]  D. Sornette,et al.  Fractal Set of Recurrent Orbits in Billiards , 1990 .

[23]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[24]  D. L. Huber,et al.  Absorption, emission, and linebreadths: A semihistorical perspective , 1977 .

[25]  Didier Sornette,et al.  Comment on spectral statistics in elastodynamics , 1991 .

[26]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[27]  R. Balian,et al.  Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations , 1972 .

[28]  W. Heitler,et al.  The quantum theory of radiation , 1936 .

[29]  G. Millington,et al.  A MODIFIED FORMULA FOR REVERBERATION , 1932 .

[30]  D. Sornette,et al.  Coarse-grained properties of the chaotic trajectories in the stadium , 1990 .

[31]  K. Schuster,et al.  Über den Nachhall in geschlossenen Räumen , 1929 .

[32]  Richard L. Weaver,et al.  Spectral statistics in elastodynamics , 1989 .

[33]  T. Seligman,et al.  Quantum Chaos and Statistical Nuclear Physics , 1986 .

[34]  Vern O. Knudsen Recent Developments in Architectural Acoustics , 1934 .

[35]  M. Schroeder Frequency‐Correlation Functions of Frequency Responses in Rooms , 1962 .

[36]  Leo L. Beranek Concert hall acoustics—1992 , 1992 .

[37]  Legrand,et al.  First return, transient chaos, and decay in chaotic systems. , 1991, Physical review letters.

[38]  Richard L. Weaver,et al.  On the ensemble variance of reverberation room transmission functions, the effect of spectral rigidity , 1989 .

[39]  E. Bogomolny Smoothed wave functions of chaotic quantum systems , 1988 .

[40]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[41]  Heller,et al.  Semiclassical construction of chaotic eigenstates. , 1993, Physical review letters.

[42]  P. Cz. Die kinetische Theorie der Gase , 1896 .

[43]  W. J. Sette A NEW REVERBERATION TIME FORMULA , 1933 .