Concurrent NetKAT: Modeling and analyzing stateful, concurrent networks

[1]  Huncar Can Tunc,et al.  DyNetKAT: An Algebra of Dynamic Networks , 2021, FoSSaCS.

[2]  Alexandra Silva,et al.  Partially Observable Concurrent Kleene Algebra , 2020, CONCUR.

[3]  Fernando Pedone,et al.  P4xos: Consensus as a Network Service , 2020, IEEE/ACM Transactions on Networking.

[4]  Alexandra Silva,et al.  Concurrent Kleene Algebra with Observations: From Hypotheses to Completeness , 2020, FoSSaCS.

[5]  Justin Hsu,et al.  Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time , 2019, Proc. ACM Program. Lang..

[6]  Alexandra Silva,et al.  Kleene Algebra with Observations , 2018, CONCUR.

[7]  Nick McKeown,et al.  p4v: practical verification for programmable data planes , 2018, SIGCOMM.

[8]  Alexandra Silva,et al.  Concurrent Kleene Algebra: Free Model and Completeness , 2017, ESOP.

[9]  Georg Struth,et al.  On Decidability of Concurrent Kleene Algebra , 2017, CONCUR.

[10]  Scott Shenker,et al.  Abstract Interpretation of Stateful Networks , 2017, SAS.

[11]  Georg Struth,et al.  Completeness Theorems for Pomset Languages and Concurrent Kleene Algebras , 2017, ArXiv.

[12]  Damien Pous,et al.  Petri Automata , 2017, Log. Methods Comput. Sci..

[13]  Katerina J. Argyraki,et al.  Verifying Reachability in Networks with Mutable Datapaths , 2016, NSDI.

[14]  Peter Jipsen,et al.  Concurrent Kleene algebra with tests and branching automata , 2016, J. Log. Algebraic Methods Program..

[15]  Pavol Cerný,et al.  Event-driven network programming , 2015, PLDI.

[16]  Alexandra Silva,et al.  A Coalgebraic Decision Procedure for NetKAT , 2015, POPL.

[17]  David Walker,et al.  Concurrent NetCore: from policies to pipelines , 2014, ICFP 2014.

[18]  Georg Struth,et al.  Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Rational Pomset Languages , 2014, RAMiCS.

[19]  Nate Foster,et al.  NetKAT: semantic foundations for networks , 2014, POPL.

[20]  Hongkun Yang,et al.  Real-time verification of network properties using Atomic Predicates , 2013, 2013 21st IEEE International Conference on Network Protocols (ICNP).

[21]  Brighten Godfrey,et al.  VeriFlow: verifying network-wide invariants in real time , 2012, HotSDN '12.

[22]  George Varghese,et al.  Header Space Analysis: Static Checking for Networks , 2012, NSDI.

[23]  Brighten Godfrey,et al.  Debugging the data plane with anteater , 2011, SIGCOMM.

[24]  Jade Alglave,et al.  Litmus: Running Tests against Hardware , 2011, TACAS.

[25]  Georg Struth,et al.  Concurrent Kleene Algebra , 2009, CONCUR.

[26]  Dexter Kozen,et al.  The Böhm-Jacopini Theorem Is False, Propositionally , 2008, MPC.

[27]  Nick McKeown,et al.  OpenFlow: enabling innovation in campus networks , 2008, CCRV.

[28]  John C. Reynolds,et al.  Separation logic: a logic for shared mutable data structures , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[29]  Pascal Weil,et al.  Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..

[30]  Leslie Lamport,et al.  How to Make a Correct Multiprocess Program Execute Correctly on a Multiprocessor , 1997, IEEE Trans. Computers.

[31]  Dexter Kozen,et al.  Kleene Algebra with Tests and Commutativity Conditions , 1996, TACAS.

[32]  Dexter Kozen,et al.  A completeness theorem for Kleene algebras and the algebra of regular events , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[33]  Daniel Krob,et al.  A Complete System of B-Rational Identities , 1990, ICALP.

[34]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..

[35]  Xiang Long Primitives for Match-Action in Theory and Practice , 2021 .

[36]  Thomas C. Bartee,et al.  Modern Applied Algebra , 1999 .

[37]  J. Grabowski,et al.  On partial languages , 1981, Fundam. Informaticae.

[38]  J. Conway Regular algebra and finite machines , 1971 .

[39]  Arto Salomaa,et al.  Two Complete Axiom Systems for the Algebra of Regular Events , 1966, JACM.