Vanadium proton exchange membrane water electrolyser

[1]  P. Jochem,et al.  Solar energy storage in German households: profitability, load changes and flexibility , 2016 .

[2]  Meihong Wang,et al.  Energy storage technologies and real life applications – A state of the art review , 2016 .

[3]  K. Pinkwart,et al.  Study of the long-term operation of a vanadium/oxygen fuel cell , 2016 .

[4]  Xin-bo Zhang,et al.  In Situ Activating Ubiquitous Rust towards Low-Cost, Efficient, Free-Standing, and Recoverable Oxygen Evolution Electrodes. , 2016, Angewandte Chemie.

[5]  Karel Bouzek,et al.  Membrane electrolysis—History, current status and perspective , 2016 .

[6]  Di Bao,et al.  In Situ Coupling of Strung Co4N and Intertwined N-C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn-Air Batteries. , 2016, Journal of the American Chemical Society.

[7]  Fikile R. Brushett,et al.  Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries , 2016 .

[8]  Adam Z. Weber,et al.  A Review of Hydrogen/Halogen Flow Cells , 2016 .

[9]  Grigorios L. Kyriakopoulos,et al.  Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes , 2016 .

[10]  Benedikt Battke,et al.  Use cases for stationary battery technologies: A review of the literature and existing projects , 2016 .

[11]  Lidiya Komsiyska,et al.  Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery , 2016 .

[12]  Tuti Mariana Lim,et al.  Recent Advancements in All‐Vanadium Redox Flow Batteries , 2016 .

[13]  Jing Yang,et al.  Development of energy storage industry in China: A technical and economic point of review , 2015 .

[14]  Jens Noack,et al.  The Chemistry of Redox-Flow Batteries. , 2015, Angewandte Chemie.

[15]  R. Gulaboski,et al.  New aspects of the electrochemical-catalytic (EC’) mechanism in square-wave voltammetry , 2015 .

[16]  Sam F. Y. Li,et al.  Nonaqueous redox-flow batteries: features, challenges, and prospects , 2015 .

[17]  Lidiya Komsiyska,et al.  Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode , 2015 .

[18]  Dan Xu,et al.  Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. , 2014, Chemical Society reviews.

[19]  H. Nirschl,et al.  A coupled-physics model for the vanadium oxygen fuel cell , 2014 .

[20]  Jens Noack,et al.  Development and characterization of a 280 cm2 vanadium/oxygen fuel cell , 2014 .

[21]  Piergiorgio Alotto,et al.  Redox flow batteries for the storage of renewable energy: A review , 2014 .

[22]  M. Skyllas-Kazacos,et al.  Review of material research and development for vanadium redox flow battery applications , 2013 .

[23]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[24]  Chris Menictas,et al.  Performance of vanadium-oxygen redox fuel cell , 2011 .

[25]  Matthias Wessling,et al.  A polyelectrolyte membrane-based vanadium/air redox flow battery , 2011 .

[26]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[27]  Yuh-Shan Ho,et al.  Gas diffusion layer for proton exchange membrane fuel cells—A review , 2009 .

[28]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[29]  H. Fritz,et al.  The Electrochemistry of Black Carbons , 1983 .

[30]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions—IV , 1963 .

[31]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[32]  J. Lingane Polarographic Characteristics of Vanadium in its Various Oxidation States , 1945 .

[33]  Grinnell. Jones,et al.  Electrochemical Studies on Vanadium Salts. I. The Vanadyl-Vanadic Oxidation-Reduction Potential1 , 1944 .