Low rates yield big returns

The function of cerebellar climbing fibers is controversial, one puzzle being their very low firing rates. The application of information theory is now providing some answers.

[1]  S E Petersen,et al.  A positron emission tomography study of the short-term maintenance of verbal information , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  C. Halldin,et al.  A PET study of , 2000, The international journal of neuropsychopharmacology.

[3]  J. Desmond,et al.  Neural Substrates of Fluid Reasoning: An fMRI Study of Neocortical Activation during Performance of the Raven's Progressive Matrices Test , 1997, Cognitive Psychology.

[4]  A. Damasio On Some Functions of the Human Prefrontal Cortex a , 1995, Annals of the New York Academy of Sciences.

[5]  W. T. Thach,et al.  Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. , 1995, Journal of neurophysiology.

[6]  J. Houk,et al.  Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. , 1985, Journal of neurophysiology.

[7]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[8]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[9]  R. Heaton,et al.  The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. , 1980, Journal of consulting and clinical psychology.

[10]  M. Metz-Lutz Handbook of neuropsychology, Vol 6 et 7, Rapin I, Segalowitz SJ (Eds.). Elsevier (1992) , 1993 .

[11]  H Koizumi,et al.  Functional mapping of the human colour centre with echo-planar magnetic resonance imaging , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Leslie G. Ungerleider,et al.  Transient and sustained activity in a distributed neural system for human working memory , 1997, Nature.

[13]  J. Albus A Theory of Cerebellar Function , 1971 .

[14]  Karl J. Friston,et al.  Comparing Functional (PET) Images: The Assessment of Significant Change , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  J. Hirsch,et al.  Distinct cortical areas associated with native and second languages , 1997, Nature.

[16]  Edward E. Smith,et al.  Spatial working memory in humans as revealed by PET , 1993, Nature.

[17]  Tatsuya Kimura,et al.  Cerebellar complex spikes encode both destinations and errors in arm movements , 1998, Nature.

[18]  K. Akert,et al.  The cerebellum as a neuronal machine , 1969 .

[19]  Richard Coppola,et al.  Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study , 1995, Neuropsychologia.

[20]  G. F. Tremblay,et al.  The Prefrontal Cortex , 1989, Neurology.

[21]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[22]  R. Llinás Rebound excitation as the physiological basis for tremor: a biophysical study of the oscillatory pro , 1984 .

[23]  S E Petersen,et al.  Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Petersen,et al.  Functional Anatomic Studies of Memory Retrieval for Auditory Words and Visual Pictures , 1996, The Journal of Neuroscience.

[25]  W Richter,et al.  Limitations of temporal resolution in functional MRI , 1997, Magnetic resonance in medicine.

[26]  A P Shimamura,et al.  Cognitive impairment following frontal lobe damage and its relevance to human amnesia. , 1989, Behavioral neuroscience.

[27]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[28]  T. Robbins,et al.  Dissociation in prefrontal cortex of affective and attentional shifts , 1996, Nature.

[29]  Hideaki Koizumi,et al.  Transient brain activity used in magnetic resonance imaging to detect functional areas , 1996, Neuroreport.

[30]  Leslie G. Ungerleider,et al.  Object and spatial visual working memory activate separate neural systems in human cortex. , 1996, Cerebral cortex.

[31]  S. Lisberger,et al.  The Cerebellum: A Neuronal Learning Machine? , 1996, Science.

[32]  Y. Lamarre Animal models of physiological, essential and parkinsonian-like tremors , 1984 .

[33]  Stanislas Dehaene,et al.  Cerebral activations during number multiplication and comparison: a PET study , 1996, Neuropsychologia.

[34]  Y. Miyashita Inferior temporal cortex: where visual perception meets memory. , 1993, Annual review of neuroscience.

[35]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[36]  P. Goldman-Rakic,et al.  Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  L. Findley,et al.  Movement Disorders: Tremor , 1984, Palgrave Macmillan UK.

[38]  J. M. Warren,et al.  THE FRONTAL GRANULAR CORTEX AND BEHAVIOR , 1964 .

[39]  M. Kawato,et al.  Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum , 1993, Nature.

[40]  A W Toga,et al.  Mapping functional activity in rodent cortex using optical intrinsic signals. , 1994, Cerebral cortex.

[41]  長濱康弘,et al.  Cerebral activation during performance of a Card Sorting Test(カード分類検査の実行中に観察される大脳の賦活部位) , 1997 .

[42]  Alan C. Evans,et al.  Functional activation of the human frontal cortex during the performance of verbal working memory tasks. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. McCarthy,et al.  Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Edward E. Smith,et al.  Temporal dynamics of brain activation during a working memory task , 1997, Nature.

[45]  R. Passingham,et al.  Non-reversal shifts after selective prefrontal ablations in monkeys (Macaca mulatta). , 1972, Neuropsychologia.

[46]  M. D’Esposito,et al.  A Trial-Based Experimental Design for fMRI , 1997, NeuroImage.

[47]  K Ugurbil,et al.  Functional magnetic resonance imaging of Broca's area during internal speech. , 1993, Neuroreport.

[48]  A. Grinvald,et al.  Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping , 1996, Science.

[49]  M. Mountain,et al.  Wisconsin card sorting test as a measure of frontal pathology: A review , 1993 .

[50]  W. T. Thach Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. , 1968, Journal of neurophysiology.

[51]  Richard lvry,et al.  Cerebellar timing systems. , 1997 .

[52]  R. Passingham The frontal lobes and voluntary action , 1993 .

[53]  M. D’Esposito,et al.  The neural basis of the central executive system of working memory , 1995, Nature.

[54]  B. Milner Effects of Different Brain Lesions on Card Sorting: The Role of the Frontal Lobes , 1963 .

[55]  E. Drewe,et al.  The effect of type and area of brain lesion on Wisconsin card sorting test performance. , 1974, Cortex; a journal devoted to the study of the nervous system and behavior.

[56]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[57]  D. A. Grant,et al.  A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. , 1948, Journal of experimental psychology.

[58]  A M Dale,et al.  Event-related functional MRI: past, present, and future. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Y. Miyashita,et al.  No‐go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging , 1998, The European journal of neuroscience.

[60]  R. Dolan,et al.  Active representation of shape and spatial location in man. , 1996, Cerebral cortex.