The Estimation of Distributions and the Minimum Relative Entropy Principle
暂无分享,去创建一个
[1] Umberto Bertelè,et al. Nonserial Dynamic Programming , 1972 .
[2] Heinz Mühlenbein,et al. Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.
[3] I. Good,et al. The Maximum Entropy Formalism. , 1979 .
[4] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[5] E. T. Jaynes,et al. Where do we Stand on Maximum Entropy , 1979 .
[6] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[7] Heinz Mühlenbein,et al. FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.
[8] Adnan Darwiche,et al. Inference in belief networks: A procedural guide , 1996, Int. J. Approx. Reason..
[9] Michael I. Jordan. Graphical Models , 2003 .
[10] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[11] William T. Freeman,et al. Understanding belief propagation and its generalizations , 2003 .
[12] William T. Freeman,et al. Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.
[13] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[14] Frank Jensen,et al. Optimal junction Trees , 1994, UAI.
[15] Thomas Uthmann,et al. Self-Organized Modularization in Evolutionary Algorithms , 2005, Evolutionary Computation.
[16] Yang Xiang,et al. A “Microscopic” Study of Minimum Entropy Search in Learning Decomposable Markov Networks , 2004, Machine Learning.
[17] Russell G. Almond. Graphical belief modeling , 1995 .
[18] Heinz Mühlenbein,et al. Evolutionary optimization and the estimation of search distributions with applications to graph bipartitioning , 2002, Int. J. Approx. Reason..
[19] U. Montanari,et al. Nonserial Dynamic Programming: On the Optimal Strategy of Variable Elimination for the Rectangular Lattice , 1972 .
[20] H. Bethe. Statistical Theory of Superlattices , 1935 .
[21] S. Kullback. Probability Densities with Given Marginals , 1968 .
[22] T. Mahnig,et al. Evolutionary algorithms: from recombination to search distributions , 2001 .
[23] R. Kikuchi. A Theory of Cooperative Phenomena , 1951 .
[24] Brian W. Kernighan,et al. An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..
[25] H. Mühlenbein,et al. From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.
[26] T. Mahnig,et al. Mathematical Analysis of Evolutionary Algorithms , 2002 .
[27] J. A. Lozano,et al. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .
[28] Heinz Mühlenbein,et al. Evolutionary Algorithms and the Boltzmann Distribution , 2002, FOGA.
[29] Heinz Mühlenbein,et al. A Maximum Entropy Approach to Sampling in EDA ? The Single Connected Case , 2003, CIARP.