On the Complexity of the Orbit Problem

We consider higher-dimensional versions of Kannan and Lipton’s Orbit Problem—determining whether a target vector space ν may be reached from a starting point x under repeated applications of a linear transformation A. Answering two questions posed by Kannan and Lipton in the 1980s, we show that when ν has dimension one, this problem is solvable in polynomial time, and when ν has dimension two or three, the problem is in NPRP.

[1]  New Advances in Transcendence Theory: Linear forms in logarithms in the p -adic case , 1988 .

[2]  OuaknineJoël,et al.  On the Complexity of the Orbit Problem , 2016 .

[3]  N. Vereshchagin Occurrence of zero in a linear recursive sequence , 1985 .

[4]  Gisbert Wüstholz,et al.  Logarithmic forms and group varieties. , 1993 .

[5]  Terence Tao,et al.  Structure and randomness , 2008 .

[6]  Richard J. Lipton,et al.  The orbit problem is decidable , 1980, STOC '80.

[7]  J. W. S. Cassels,et al.  On the Taylor coefficients of rational functions , 1956 .

[8]  L. Kronecker,et al.  Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. , 1857 .

[9]  V. Blondel,et al.  The presence of a zero in an integer linear recurrent sequence is NP-hard to decide , 2002 .

[10]  Hugh L. Montgomery,et al.  Algebraic integers near the unit circle , 1971 .

[11]  Joël Ouaknine,et al.  Decision Problems for Linear Recurrence Sequences , 2012, RP.

[12]  Joël Ouaknine,et al.  The Polyhedron-Hitting Problem , 2014, SODA.

[13]  T. Shorey,et al.  The distance between terms of an algebraic recurrence sequence. , 1984 .

[14]  A. Baker Transcendental Number Theory , 1975 .

[15]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[16]  Richard J. Lipton,et al.  The Complexity of the A B C Problem , 2000, SIAM J. Comput..

[17]  Between Decidability Skolem's Problem - On the Border , 2005 .

[18]  Vikraman Arvind,et al.  The orbit problem is in the GapL hierarchy , 2008, J. Comb. Optim..

[19]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[20]  J. Berstel,et al.  Deux propriétés décidables des suites récurrentes linéaires , 1976 .

[21]  M. Mignotte Some Useful Bounds , 1983 .

[22]  Bruce E. Litow A Decision Method for the Rational Sequence Problem , 1997, Electron. Colloquium Comput. Complex..

[23]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[24]  Richard Zippel Zero Testing of Algebraic Functions , 1997, Inf. Process. Lett..

[25]  Arnold Schönhage,et al.  On the Power of Random Access Machines , 1979, ICALP.

[26]  Joël Ouaknine,et al.  The orbit problem in higher dimensions , 2013, STOC '13.

[27]  Terence Tao Structure and Randomness: Pages from Year One of a Mathematical Blog , 2008 .

[28]  Mikhail N. Vyalyi,et al.  Orbits of linear maps and regular languages , 2010, CSR.

[29]  I. Stewart,et al.  Algebraic Number Theory and Fermat's Last Theorem , 2015 .

[30]  Samir Genaim,et al.  On the Termination of Integer Loops , 2012, TOPL.

[31]  Mark Braverman,et al.  Termination of Integer Linear Programs , 2006, CAV.

[32]  Jean-Charles Delvenne,et al.  The continuous Skolem-Pisot problem , 2010, Theor. Comput. Sci..

[33]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[34]  Igor E. Shparlinski,et al.  Recurrence Sequences , 2003, Mathematical surveys and monographs.

[35]  Emmanuel Hainry,et al.  Reachability in Linear Dynamical Systems , 2008, CiE.

[36]  Christer Lech,et al.  A note on recurring series , 1953 .

[37]  Georges Hansel A simple proof of the Skolem-Mahler-Lech Theorem , 1986 .

[38]  Georges Hansel,et al.  Une Démonstration Simple du Théorème de Skolem-Mahler-Lech , 1986, Theor. Comput. Sci..

[39]  Michael A. Harrison,et al.  Lectures on linear sequential machines , 1969 .

[40]  Richard J. Lipton,et al.  Polynomial-time algorithm for the orbit problem , 1986, JACM.

[41]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[42]  Supratik Chakraborty Termination Of Linear Programs , 2008 .