On the Complexity of the Orbit Problem
暂无分享,去创建一个
Joël Ouaknine | James Worrell | Ventsislav Chonev | J. Ouaknine | J. Worrell | Ventsislav Chonev | Joël Ouaknine
[1] New Advances in Transcendence Theory: Linear forms in logarithms in the p -adic case , 1988 .
[2] OuaknineJoël,et al. On the Complexity of the Orbit Problem , 2016 .
[3] N. Vereshchagin. Occurrence of zero in a linear recursive sequence , 1985 .
[4] Gisbert Wüstholz,et al. Logarithmic forms and group varieties. , 1993 .
[5] Terence Tao,et al. Structure and randomness , 2008 .
[6] Richard J. Lipton,et al. The orbit problem is decidable , 1980, STOC '80.
[7] J. W. S. Cassels,et al. On the Taylor coefficients of rational functions , 1956 .
[8] L. Kronecker,et al. Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. , 1857 .
[9] V. Blondel,et al. The presence of a zero in an integer linear recurrent sequence is NP-hard to decide , 2002 .
[10] Hugh L. Montgomery,et al. Algebraic integers near the unit circle , 1971 .
[11] Joël Ouaknine,et al. Decision Problems for Linear Recurrence Sequences , 2012, RP.
[12] Joël Ouaknine,et al. The Polyhedron-Hitting Problem , 2014, SODA.
[13] T. Shorey,et al. The distance between terms of an algebraic recurrence sequence. , 1984 .
[14] A. Baker. Transcendental Number Theory , 1975 .
[15] Dan Suciu,et al. Journal of the ACM , 2006 .
[16] Richard J. Lipton,et al. The Complexity of the A B C Problem , 2000, SIAM J. Comput..
[17] Between Decidability. Skolem's Problem - On the Border , 2005 .
[18] Vikraman Arvind,et al. The orbit problem is in the GapL hierarchy , 2008, J. Comb. Optim..
[19] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[20] J. Berstel,et al. Deux propriétés décidables des suites récurrentes linéaires , 1976 .
[21] M. Mignotte. Some Useful Bounds , 1983 .
[22] Bruce E. Litow. A Decision Method for the Rational Sequence Problem , 1997, Electron. Colloquium Comput. Complex..
[23] Arto Salomaa,et al. Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.
[24] Richard Zippel. Zero Testing of Algebraic Functions , 1997, Inf. Process. Lett..
[25] Arnold Schönhage,et al. On the Power of Random Access Machines , 1979, ICALP.
[26] Joël Ouaknine,et al. The orbit problem in higher dimensions , 2013, STOC '13.
[27] Terence Tao. Structure and Randomness: Pages from Year One of a Mathematical Blog , 2008 .
[28] Mikhail N. Vyalyi,et al. Orbits of linear maps and regular languages , 2010, CSR.
[29] I. Stewart,et al. Algebraic Number Theory and Fermat's Last Theorem , 2015 .
[30] Samir Genaim,et al. On the Termination of Integer Loops , 2012, TOPL.
[31] Mark Braverman,et al. Termination of Integer Linear Programs , 2006, CAV.
[32] Jean-Charles Delvenne,et al. The continuous Skolem-Pisot problem , 2010, Theor. Comput. Sci..
[33] V. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .
[34] Igor E. Shparlinski,et al. Recurrence Sequences , 2003, Mathematical surveys and monographs.
[35] Emmanuel Hainry,et al. Reachability in Linear Dynamical Systems , 2008, CiE.
[36] Christer Lech,et al. A note on recurring series , 1953 .
[37] Georges Hansel. A simple proof of the Skolem-Mahler-Lech Theorem , 1986 .
[38] Georges Hansel,et al. Une Démonstration Simple du Théorème de Skolem-Mahler-Lech , 1986, Theor. Comput. Sci..
[39] Michael A. Harrison,et al. Lectures on linear sequential machines , 1969 .
[40] Richard J. Lipton,et al. Polynomial-time algorithm for the orbit problem , 1986, JACM.
[41] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[42] Supratik Chakraborty. Termination Of Linear Programs , 2008 .