Timelines with Temporal Uncertainty

Timelines are a formalism to model planning domains where the temporal aspects are predominant, and have been used in many real-world applications. Despite their practical success, a major limitation is the inability to model temporal uncertainty, i.e. the fact that the plan executor cannot decide the actual duration of some activities. In this paper we make two key contributions. First, we propose a comprehensive, semantically well founded framework that (conservatively) extends with temporal uncertainty the state of the art timeline approach. Second, we focus on the problem of producing time-triggered plans that are robust with respect to temporal uncertainty, under a bounded horizon. In this setting, we present the first complete algorithm, and we show how it can be made practical by leveraging the power of Satisfiability Modulo Theories.

[1]  Alberto Griggio,et al.  The MathSAT5 SMT Solver , 2013, TACAS.

[2]  Andrew Coles,et al.  Managing concurrency in temporal planning using planner-scheduler interaction , 2009, Artif. Intell..

[3]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[4]  Nicola Muscettola,et al.  Dynamic Control Of Plans With Temporal Uncertainty , 2001, IJCAI.

[5]  Amedeo Cesta,et al.  Developing an End-to-End Planning Application from a Timeline Representation Framework , 2009, IAAI.

[6]  David Monniaux A Quantifier Elimination Algorithm for Linear Real Arithmetic , 2008, LPAR.

[7]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[8]  Amedeo Cesta,et al.  Science Operations Pre-Planning & Optimization using AI constraint-resolution - the APSI Case Study 1 , 2008 .

[9]  Marco Roveri,et al.  Solving Temporal Problems Using SMT: Strong Controllability , 2012, CP.

[10]  Cesare Tinelli,et al.  Satisfiability Modulo Theories , 2021, Handbook of Satisfiability.

[11]  Amedeo Cesta,et al.  Planning with Multiple-Components in Omps , 2008, IEA/AIE.

[12]  N. Yorke-Smith,et al.  Weak and Dynamic Controllability of Temporal Problems with Disjunctions and Uncertainty , 2010 .

[13]  Peter Jonsson,et al.  Eight Maximal Tractable Subclasses of Allen's Algebra with Metric Time , 1997, J. Artif. Intell. Res..

[14]  Thierry Vidal,et al.  Handling contingency in temporal constraint networks: from consistency to controllabilities , 1999, J. Exp. Theor. Artif. Intell..

[15]  Marco Roveri,et al.  Solving Temporal Problems Using SMT: Weak Controllability , 2012, AAAI.

[16]  Malik Ghallab,et al.  Representation and Control in IxTeT, a Temporal Planner , 1994, AIPS.

[17]  Nicola Muscettola,et al.  HSTS: Integrating Planning and Scheduling , 1993 .

[18]  Tristan B. Smith,et al.  EUROPA : A Platform for AI Planning, Scheduling, Constraint Programming, and Optimization , 2012 .

[19]  Abdul Sattar,et al.  Temporal Reasoning with Qualitative and Quantitative Information about Points and Durations , 1998, AAAI/IAAI.

[20]  Amedeo Cesta,et al.  APSI Case# 1 : pre-planning science operations in Mars Express , 2008 .

[21]  Ola Angelsmark,et al.  Some Observations on Durations, Scheduling and Allen's Algebra , 2000, CP.

[22]  Stephen F. Smith,et al.  Generating Feasible Schedules under Complex Metric Constraints , 1994, AAAI.

[23]  Cédric Pralet,et al.  How to model planning and scheduling problems using constraint networks on timelines , 2010, Knowl. Eng. Rev..

[24]  Amedeo Cesta,et al.  MrSPOCK—STEPS IN DEVELOPING AN END‐TO‐END SPACE APPLICATION , 2011, Comput. Intell..

[25]  Enrico Tronci,et al.  Analyzing Flexible Timeline-based Plans , 2010, ECAI.

[26]  Andrew Coles,et al.  COLIN: Planning with Continuous Linear Numeric Change , 2012, J. Artif. Intell. Res..

[27]  Enrico Tronci,et al.  Validation and verification issues in a timeline-based planning system , 2010, The Knowledge Engineering Review.

[28]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[29]  Jeremy Frank,et al.  Constraint-Based Attribute and Interval Planning , 2003, Constraints.

[30]  Neil Yorke-Smith,et al.  Strong Controllability of Disjunctive Temporal Problems with Uncertainty , 2007, CP.