Orthogonal-state-based protocols of quantum key agreement

Two orthogonal-state-based protocols of quantum key agreement (QKA) are proposed. The first protocol of QKA proposed here is designed for two-party QKA, whereas the second protocol is designed for multi-party QKA. Security of these orthogonal-state-based protocols arise from monogamy of entanglement. This is in contrast to the existing protocols of QKA where security arises from the use of non-orthogonal state (non-commutativity principle). Further, it is shown that all the quantum systems that are useful for implementation of quantum dialogue and most of the protocols of secure direct quantum communication can be modified to implement protocols of QKA.

[1]  Anirban Pathak,et al.  Elements of Quantum Computation and Quantum Communication , 2013 .

[2]  Zhiwei Sun,et al.  Improvements on “multiparty quantum key agreement with single particles” , 2013, Quantum Inf. Process..

[3]  Xunru Yin,et al.  Three-Party Quantum Key Agreement with Two-Photon Entanglement , 2013 .

[4]  Nguyen Ba An Quantum dialogue , 2004 .

[5]  Qing-yu Cai,et al.  Improving the capacity of the Boström-Felbinger protocol , 2003, quant-ph/0311168.

[6]  Marco Genovese,et al.  Experimental realization of counterfactual quantum cryptography , 2011, 1107.5467.

[7]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[8]  Tzonelih Hwang,et al.  Quantum key agreement protocol based on BB84 , 2010 .

[9]  Guihua Zeng,et al.  Quantum key agreement protocol , 2004 .

[10]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[11]  Chia-Wei Tsai,et al.  Improvement on “Quantum Key Agreement Protocol with Maximally Entangled States” , 2011 .

[12]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[13]  Victor Shoup,et al.  Lower Bounds for Discrete Logarithms and Related Problems , 1997, EUROCRYPT.

[14]  Vivek Kothari,et al.  On the group-theoretic structure of a class of quantum dialogue protocols , 2013 .

[15]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[16]  Alfred Menezes,et al.  Authenticated Diffie-Hellman Key Agreement Protocols , 1998, Selected Areas in Cryptography.

[17]  Nicolas Gisin,et al.  Linking Classical and Quantum Key Agreement: Is There a Classical Analog to Bound Entanglement? , 2002, Algorithmica.

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  Runhua Shi,et al.  Multi-party quantum key agreement with bell states and bell measurements , 2012, Quantum Information Processing.

[20]  Min Ren,et al.  Experimental demonstration of counterfactual quantum key distribution , 2010, 1003.4621.

[21]  Chitra Shukla,et al.  Hierarchical quantum communication , 2013, 1301.0498.

[22]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[23]  T. Noh Counterfactual quantum cryptography. , 2008, Physical review letters.

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  Fei Gao,et al.  Multiparty quantum key agreement with single particles , 2012, Quantum Information Processing.

[26]  Marco Lucamarini,et al.  Secure deterministic communication without entanglement. , 2005, Physical review letters.

[27]  Alessio Avella,et al.  Experimental quantum-cryptography scheme based on orthogonal states , 2010 .

[28]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[29]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[30]  Yang Liu,et al.  Experimental demonstration of counterfactual quantum communication. , 2011, Physical review letters.

[31]  Goldenberg,et al.  Quantum cryptography based on orthogonal states. , 1995, Physical review letters.

[32]  R. Srikanth,et al.  BEYOND THE GOLDENBERG–VAIDMAN PROTOCOL: SECURE AND EFFICIENT QUANTUM COMMUNICATION USING ARBITRARY, ORTHOGONAL, MULTI-PARTICLE QUANTUM STATES , 2012 .