Direct syntheses of Lan+1NinO3n+1 phases (n=1, 2, 3 and ∞) from nanosized co-crystallites

A new direct route for the 'bottom up' syntheses of phases in the La{sub n+1}Ni{sub n}O{sub 3n+1} series (n=1, 2, 3 and {infinity}) has been achieved via single-step heat treatments of nanosized co-crystallized precursors. The co-crystallized precursors were prepared using a continuous hydrothermal flow synthesis system that uses a superheated water flow at ca. 400 deg. C and 24.1 MPa to produce nanoparticulate slurries. Overall, a significant reduction in time and number of steps for the syntheses of La{sub 3}Ni{sub 2}O{sub 7} and La{sub 4}Ni{sub 3}O{sub 10} was achieved compared with more conventional synthesis methods, which typically require multiple homogenization and reheating steps over several days. - Graphical abstract: Scanning electron micrograph of La{sub 4}Ni{sub 3}O{sub 10} (bar=1 {mu}m) made by a single heat treatment at 1075 deg. C in air for 12 h of a 4:3 La:Ni ratio co-crystallite mixture of the metal hydroxides.

[1]  Xin Wang,et al.  Preparation and characterization of LaNiO3 nanocrystals , 2006 .

[2]  Edward Lester,et al.  A continuous and clean one-step synthesis of nano-particulate Ce1−xZrxO2 solid solutions in near-critical water , 2000 .

[3]  K. Kanamura,et al.  Continuous production of LiCoO2 fine crystals for lithium batteries by hydrothermal synthesis under supercritical condition , 2001 .

[4]  Jawwad A. Darr,et al.  Direct Synthesis of Nanosized NiCo2O4 Spinel and Related Compounds via Continuous Hydrothermal Synthesis Methods , 2007 .

[5]  P. Lacorre Passage from T-type to T′-type arrangement by reducing R4Ni3O10 to R4Ni3O8 (R = La, Pr, Nd) , 1992 .

[6]  F. Aldinger,et al.  Stability and thermodynamic functions of lanthanum nickelates , 2007 .

[7]  M. Itoh,et al.  ORDER-DISORDER PHASE TRANSITIONS OF EXCESS OXYGEN ATOMS AND THEIR APPEARANCE AS EUTECTOID AND PERITECTOID REACTIONS IN LA2NIO4+DELTA (DELTA =0.047-0. 116) CRYSTALS , 1999 .

[8]  P. Pomonis,et al.  Low-temperature synthesis of perovskite solids LaMO3(M = Ni, Co, Mn)via binuclear complexes of compartmental ligand N,N′-bis(3-carboxysalicylidene)ethylenediamine , 1991 .

[9]  Z. Zhang,et al.  Synthesis, structure, and properties of Ln{sub r}Ni{sub 3}O{sub 10{minus}{delta}} (Ln = La, Pr, Nd) , 1995 .

[10]  Edward Lester,et al.  Continuous hydrothermal synthesis of inorganicmaterials in a near-critical water flow reactor; the one-step synthesisof nano-particulate Ce1 − xZrxO2(x = 0–1)solid solutions , 2001 .

[11]  M. Morris,et al.  The preparation of the single-phase perovskite LaNiO3 , 1999 .

[12]  N. Millot,et al.  Hydrothermal synthesis of nanostructured inorganic powders by a continuous process under supercritical conditions , 2005 .

[13]  K. Ishikawa,et al.  Metal–Semiconductor Transition of La2NiO4+δ , 1997 .

[14]  M. Pouchard,et al.  New preparation method of Lan+1NinO3n+1–δ (n=2, 3) , 1997 .

[15]  Edward Lester,et al.  Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles , 2006 .

[16]  H. Höfer,et al.  Crystal Chemistry and Thermal Behavior in the La ( Cr , Ni ) O 3 Perovskite System , 1993 .

[17]  J. R. Jurado,et al.  Present several items on ceria-based ceramic electrolytes: synthesis, additive effects, reactivity and electrochemical behaviour , 2001 .

[18]  S. N. Ruddlesden,et al.  The compound Sr3Ti2O7 and its structure , 1958 .

[19]  F. Aldinger,et al.  Thermodynamic analysis of the ternary La–Ni–O system , 2004 .

[20]  M. Pouchard,et al.  Electrochemical oxidation and reduction of La4Ni3O10 in alkaline media , 2003 .

[21]  M. Pouchard,et al.  Electron microscopy study of electrochemically prepared La2NiO4+δ (0.17≤δ≤0.26) , 1992 .

[22]  I. Davidson,et al.  A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications , 2006 .

[23]  A. E. Martinelli,et al.  Low-temperature synthesis of single-phase crystalline LaNiO3 perovskite via Pechini method , 2002 .

[24]  J. R. Jurado,et al.  Electrical characterisation of ceramic conductors for fuel cell applications , 2000 .

[25]  F. Ansart,et al.  Synthesis of La2−xNiO4+δ oxides by polymeric route: non-stoichoimetry control , 2004 .

[26]  M. T. Colomer,et al.  Non-stoichiometric La(1 – x)NiO(3 – δ) perovskites produced by combustion synthesis , 1999 .

[27]  Jae-won Lee,et al.  Synthesis of LiFePO4 micro and nanoparticles in supercritical water , 2006 .

[28]  H. Müller-Buschbaum,et al.  Über Oxocuprate. XVIII. Zur Kenntnis von Sr2CuO2Br2 mit einem Beitrag über La2NiO4 , 1977 .

[29]  Yue Chen,et al.  Preparation and characterization of supported dense oxygen permeating membrane of mixed conductor La2NiO4+δ , 2003 .

[30]  F. Ansart,et al.  Synthesis of La2NiO4+δ oxides by sol–gel process: Structural and microstructural evolution from amorphous to nanocrystallized powders , 2006 .

[31]  X. Verykios,et al.  Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts , 1996 .

[32]  Paul Boldrin,et al.  Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. , 2006, Chemical communications.

[33]  Isaac Abrahams,et al.  Direct syntheses of mixed ion and electronic conductors La4Ni3O10 and La3Ni2O7 from nanosized coprecipitates , 2007 .

[34]  A. Tiwari,et al.  Electrical transport in , 1999 .

[35]  S. Tiwari,et al.  Electrocatalysis of oxygen evolution/reductionon LaNiO3 prepared by a novel malic acid-aided method , 1998 .

[36]  Xu,et al.  Electronic properties of the metallic perovskite LaNiO3: Correlated behavior of 3d electrons. , 1992, Physical review. B, Condensed matter.

[37]  T. Venkatesan,et al.  Dependence of the conductivity noise of metallic oxide interconnects on the oxygen stoichiometry: a study of , 1997 .

[38]  J. Goodenough,et al.  Synthesis, Structure, and Properties of the Layered Perovskite La3Ni2O7-δ , 1994, Journal of Solid State Chemistry.

[39]  Jae-won Lee,et al.  Characteristics of lithium iron phosphate (LiFePO4) particles synthesized in subcritical and supercritical water , 2005 .

[40]  A. Teja,et al.  Continuous hydrothermal synthesis of CoFe2O4 nanoparticles , 2003 .

[41]  C. Ling,et al.  Neutron Diffraction Study of La3Ni2O7: Structural Relationships Among n=1, 2, and 3 Phases Lan+1NinO3n+1 , 2000 .

[42]  S. Skinner Characterisation of La2NiO4+δ using in-situ high temperature neutron powder diffraction , 2003 .

[43]  X. Verykios,et al.  Carbon and Oxygen Reaction Pathways of CO2 Reforming of Methane over Ni/La2O3 and Ni/Al2O3 Catalysts Studied by Isotopic Tracing Techniques , 1999 .

[44]  Dowon Kim,et al.  Low-temperature electronic properties of the Lan+1NinO3n+1 (n=2, 3, and ∞) system : evidence for a crossover from fluctuating-valence to fermi-liquid-like behavior , 1994 .

[45]  M. Greenblatt,et al.  Synthesis, Structure, and Properties of Ln4Ni3O10-δ (Ln = La, Pr, and Nd) , 1995 .

[46]  J. Takahashi,et al.  Preparation of LaNiO3 powder from coprecipitated lanthanum-nickel oxalates , 1990 .

[47]  I. Davidson,et al.  Synthesis and characterization of La4Ni3−xCoxO10±δ (0.0 ≤ x ≤ 3.0, Δx = 0.2) for solid oxide fuel cell cathodes , 2006 .

[48]  M. S. Hegde,et al.  Low temperature synthesis, structure and properties of alkali-doped La2NiO4, LaNiO3 and LaNi0.85Cu0.15O3 from alkali hydroxide fluxes , 2003 .

[49]  Y. Ueda,et al.  Phase diagram of La2NiO4+δ (0 ≤ δ ≤ 0.18) II. Thermodynamics of excess oxygen, phase transitions (0.06 ≤ δ < 0.11) and phase segregation (0.03 ≤ 6 < 0.06) , 1996 .

[50]  V. Cherepanov,et al.  Thermodynamic properties of complex oxides in the La-Ni-O system , 2006 .

[51]  T. Umegaki,et al.  Preparation and Electrochemical Characterization of LiCoO2 Particles Prepared by Supercritical Water Synthesis , 1999 .

[52]  S. Skinner,et al.  Recent developments in Ruddlesden–Popper nickelate systems for solid oxide fuel cell cathodes , 2006 .

[53]  J. Bassat,et al.  Influence of oxygen stoichiometry on the electronic properties of La4Ni3O10±δ , 2000 .

[54]  Zhaolong Zhang,et al.  Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts , 1996 .

[55]  Richards,et al.  Structure of the interstitial oxygen defect in La2NiO4+ delta. , 1989, Physical review. B, Condensed matter.

[56]  K. Arai,et al.  Effect of water density on polymorph of BaTiO3 nanoparticles synthesized under sub and supercritical water conditions , 2005 .

[57]  J. Kilner,et al.  Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ , 2000 .

[58]  R. Carbonio,et al.  Crystal Structure Refinement and Stability of LaFexNi1−xO3Solid Solutions , 1997 .

[59]  D. Das,et al.  Thermochemistry of La2O2CO3 decomposition , 2003 .