Palaeoenvironmental implications of coal formation in Dobrudzha Basin, Bulgaria: Insights from organic petrological and geochemical properties

Abstract The Dobrudzha Basin in northeast Bulgaria contains 86 coal seams distributed within three coal-bearing formations of Late Carboniferous age. This study presents the organic petrological and geochemical characteristics of coals from the Makedonka and Krupen Formations, containing some of the most prominent coal seams. These were characterized by means of proximate and Rock-Eval analyses, vitrinite reflectance measurements, organic petrography and GCMS analysis in order to establish variations in vegetation and depositional settings. Based on random vitrinite reflectance (avg. 0.7% R r ) and TOC contents (avg. ~ 80%, daf) the coals can be classified as low rank bituminous (high volatile B-C). Low Tmax values (avg. 430 °C) further indicate a low degree of organic matter maturity. The low to moderately high ash yields, together with the presence of shaly partings, and generally low sulfur contents are consistent with peat formation in a fluviatile sedimentary environment. Petrographic analysis reveals complex maceral composition with abundant liptinite and inertinite. The predominance of detrovitrinite and the almost complete lack of strongly gelified macerals argue for enhanced humification of the plant tissues and peat formation in relatively dry environments (above water table). The distributions of n-alkanes, diterpenoids, and steranes indicate that the organic matter originated from terrestrial vascular plants. The high pristane/phytane ratios point to peat deposition under oxic conditions. Low concentrations of hopanes argue for limited bacterial degradation of the organic matter, possibly due to low pH conditions during peatification. The presence of tetracyclic diterpanes and their aromatic counterparts is attributed to pre-gymnosperm (cordaitean) input. The existence of cordaiteans, although as minor component of the palaeovegetational communities, is further evidenced by the presence of trace amounts of aromatic arborane/fernane derivatives in almost all studied samples. The occurrence of combustion-derived PAHs in all studied samples is consistent with the abundant inertinite and indicates frequent forest fires during peat formation.

[1]  Y. Tenchov Vein reticulation in seed ferns of the Dobrudzha coalfield Bulgaria , 2012 .

[2]  W. Michaelis,et al.  Structure and origin of terpenoid hydrocarbons in some German coals , 1990 .

[3]  S. Hoernes,et al.  Palaeoenvironment of the Eocene Eckfeld Maar lake (Germany): implications from geochemical analysis of the oil shale sequence , 2005 .

[4]  F. Jiguet,et al.  Identifying autumn migration routes for the globally threatened Aquatic Warbler Acrocephalus paludicola , 2006 .

[5]  R. Littke,et al.  Petroleum generation and migration in coal seams of the Carboniferous Ruhr Basin, northwest Germany , 1990 .

[6]  S. Hoernes,et al.  Aromatized arborane/fernane hydrocarbons as biomarkers for cordaites , 2006, Naturwissenschaften.

[7]  G. Eglinton,et al.  An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes , 2000 .

[8]  A. Chaffee,et al.  Biological markers extractable from coal , 1986 .

[9]  R. Philp Petroleum Formation and Occurrence , 1985 .

[10]  L. Dawson,et al.  Investigating the carbon isotope composition and leaf wax n-alkane concentration of C3 and C4 plants in Stiffkey saltmarsh, Norfolk, UK , 2016 .

[11]  B. Simoneit,et al.  Organic geochemical indicators of palaeoenvironmental conditions of sedimentation , 1978 .

[12]  Ronald A. Hites,et al.  The global distribution of polycyclic aromatic hydrocarbons in recent sediments , 1978 .

[13]  P. Cranwell Organic geochemistry of Cam Loch (Sutherland) sediments , 1977 .

[14]  B. Simoneit,et al.  Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi , 2013 .

[15]  A. Riboulleau,et al.  Aliphatic and aromatic biomarkers from Gondwanan sediments of Late Ordovician to Early Devonian age: An early terrestrialization approach , 2011 .

[16]  W. Giger,et al.  Poly cyclic aromatic hydrocarbons in Recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis , 1980 .

[17]  J. Allen,et al.  Microbial subterminal oxidation of alkanes and alk-1-enes , 1971, Lipids.

[18]  J. Volkman,et al.  acyclic isoprenoids as biological markers , 1986 .

[19]  S. M. Barrett,et al.  Microalgal biomarkers: A review of recent research developments , 1998 .

[20]  J. Volkman,et al.  Sterols in microorganisms , 2002, Applied Microbiology and Biotechnology.

[21]  W. P. Ball,et al.  Production and characterization of synthetic wood chars for use as surrogates for natural sorbents , 2006 .

[22]  William B. Hughes,et al.  The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks , 1995 .

[23]  J. Espitalie,et al.  Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d'évolution , 1977 .

[24]  K. Peters,et al.  Geochemistry of Crude Oils from Eastern Indonesia , 1999 .

[25]  C. Cockell,et al.  Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings , 2008 .

[26]  L. Snowdon,et al.  Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis , 2002 .

[27]  R. A. Noble,et al.  Identification of some diterpenoid hydrocarbons in petroleum , 1986 .

[28]  M. Teichmüller,et al.  Composition of soluble organic matter in coals: relation to rank and liptinite fluorescence , 1980 .

[29]  J. Volkman A review of sterol markers for marine and terrigenous organic matter , 1986 .

[30]  G. Ourisson,et al.  Prokaryotic Polyterpenes: Phylogenetic Precursors of Sterols1 , 1982 .

[31]  M. Lewan,et al.  A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter , 1999 .

[32]  P. Albrecht,et al.  Rearranged sterenes in a shale: occurrence and simulated formation , 1975 .

[33]  A. Bechtel,et al.  Influence of floral assemblage, facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the Miocene Maritza-East lignite (Bulgaria) , 2005 .

[34]  T. Taylor,et al.  Paleobotany: The Biology and Evolution of Fossil Plants , 2008 .

[35]  I. Lakova,et al.  THE MOESIAN AND BALKAN TERRANES IN BULGARIA: PALAEOZOIC BASIN DEVELOPMENT, PALAEOGEOGRAPHY AND TECTONIC EVOLUTION , 2006 .

[36]  K. Sigler,et al.  Hopanoids in Bacteria and Cyanobacteria – Their Role in Cellular Biochemistry and Physiology, Analysis and Occurrence , 2010 .

[37]  B. Simoneit Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance , 1977 .

[38]  Geoffrey Eglinton,et al.  Leaf Epicuticular Waxes , 1967, Science.

[39]  B. Simoneit,et al.  Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. , 2012, Environmental science & technology.

[40]  Y. Tenchov Early Westphalian sediments of Dobrudzha Coalfield (NE Bulgaria) - an interpretation of their stratigraphy and sedimentation conditions , 2005 .

[41]  B. Horsfield,et al.  Changes in bulk properties and molecular compositions within New Zealand Coal Band solvent extracts from early diagenetic to catagenetic maturity levels , 2009 .

[42]  R. Sachsenhofer,et al.  Stratigraphic distribution of macerals and biomarkers in the Donets Basin: Implications for paleoecology, paleoclimatology and eustacy , 2006 .

[43]  Y. Tenchov LATE Westphalian and early Stephanian sediments of the Dobrudzha Coalfield, NE Bulgaria , 2007, Geological Magazine.

[44]  J. Damsté,et al.  Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator , 1987, Nature.

[45]  S. Brassell,et al.  Tocopherols as likely precursors of pristane in ancient sediments and crude oils , 1984, Nature.

[46]  I. Morelli,et al.  Aliphatic and triterpenoid hydrocarbons from ferns , 1972 .

[47]  B. Cardott,et al.  Classification of huminite—ICCP System 1994 , 2005 .

[48]  D. Olago,et al.  Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa , 1998 .

[49]  H. Hagemann,et al.  Aromatized arborane/fernane hydrocarbons as molecular indicators of floral changes in Upper Carboniferous/Lower Permian strata of the Saar-Nahe Basin, southwestern Germany , 1994 .

[50]  J. Volkman Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways , 2005 .

[51]  R. Kagi,et al.  Origin of perylene in ancient sediments and its geological significance , 2000 .

[52]  B. Simoneit Cyclic terpenoids of the geosphere , 1986 .

[53]  J. Disnar,et al.  Biological origin of tetracyclic diterpanes, n-alkanes and other biomarkers found in lower carboniferous Gondwana coals (Niger) , 1994 .

[54]  S. Natori,et al.  Triterpenoids of the gramineae , 1970 .

[55]  Rohmer Michel,et al.  The hopanoids, prokaryotic triterpenoids and precursors of ubiquitous molecular fossils , 1992 .

[56]  G. Bonchev,et al.  PECULIARITIES IN THE COMPOSITION OF THE CARBONIFEROUS MEGAFLORA IN SVOGE AND DOBRUDZHA COALFIELDS (BULGARIA) , 2011 .

[57]  Patrick Landais,et al.  Palaeoenvironmental assessment of Westphalian fluvio-lacustrine deposits of Lorraine (France) using a combination of organic geochemistry and sedimentology , 2001 .

[58]  R. Littke,et al.  Palaoecologic trends and petroleum potential of Upper carboniferous coal seams of western Germany as revealed by their petrographic and organic geochemical characteristics , 1989 .

[59]  M. Blumer,et al.  Hydrocarbons of marine phytoplankton , 1971 .

[60]  R. A. Noble,et al.  Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils , 1985 .

[61]  B. Simoneit,et al.  Triterpenoids from lipids of Rhodomicrobium vanniellii , 1984, Archives of Microbiology.

[62]  J. Smith,et al.  Isoprenoid Hydrocarbons in Coal and Petroleum , 1969, Nature.

[63]  P. Brooks,et al.  Stereochemical relationships between phytol and phytanic acid, dihydrophytol and C18 ketone in Recent sediments☆ , 1978 .

[64]  M. Asif,et al.  New insights into the origin of perylene in geological samples , 2009 .

[65]  R. Berner,et al.  C/S method for distinguishing freshwater from marine sedimentary rocks , 1984 .

[66]  D. McKirdy,et al.  Fernenes and other triterpenoid hydrocarbons in Dicroidium-bearing Triassic mudstones and coals from South Australia , 1998 .

[67]  J. Calder,et al.  Early diagenesis of fatty acids and hydrocarbons in a salt marsh environment , 1973 .

[68]  S. M. Barrett,et al.  STEROLS OF 14 SPECIES OF MARINE DIATOMS (BACILLARIOPHYTA) 1 , 1995 .

[69]  B. Simoneit,et al.  Composition of the extract from a Carboniferous bituminous coal. 2. Compound-specific isotope analyses , 1995 .

[70]  A. Lücke,et al.  Depositional environment of the Late Miocene Hausruck lignite (Alpine Foreland Basin): insights from petrography, organic geochemistry, and stable carbon isotopes , 2003 .

[71]  G. Britton The Biochemistry of Natural Pigments , 1983 .

[72]  S. Brassell,et al.  Isoprenoid thiophenes: novel products of sediment diagenesis? , 1986, Nature.

[73]  P. Albrecht,et al.  Simulation of the geochemical transformations of sterols: superacid effect of clay minerals , 1979 .

[74]  A. Diefendorf,et al.  Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: A review , 2017 .

[75]  V. Kashirtsev,et al.  Terpanes and steranes in coals of different genetic types in Siberia , 2010 .

[76]  R. Schegg,et al.  Maturity studies in the Carboniferous Dobroudja coal basin (northeastern Bulgaria)—coalification, clay diagenesis and thermal modelling , 1992 .

[77]  Richard Walter,et al.  Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile , 2007, Proceedings of the National Academy of Sciences.

[78]  M. Élie,et al.  Organic petrology and geochemistry of the Carboniferous coal seams from the Central Asturian Coal Basin (NW Spain) , 2004 .

[79]  C. Djerassi,et al.  Terpenoide, LIV. Arborinol, ein neuer Triterpen‐Typus , 1963 .

[80]  Z. Aizenshtat Perylene and its geochemical significance , 1973 .

[81]  J. Clayton,et al.  A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales , 2003 .

[82]  J. W. Leeuw,et al.  Organic geochemical characteristics of sediments from the anoxic brine-filled Tyro basin (eastern Mediterranean) , 1987 .

[83]  S. Brassell,et al.  Biogeochemical significance of a novel sedimentary C27 stanol , 1981, Nature.

[84]  D. Welte,et al.  Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography , 1980 .

[85]  C. Cleal,et al.  Palynological evidence for late Westphalian–early Stephanian vegetation change in the Dobrudzha Coalfield, NE Bulgaria , 2007, Geological Magazine.

[86]  Pierre Albrecht,et al.  The Hopanoids: palaeochemistry and biochemistry of a group of natural products , 1979 .

[87]  G. Cass,et al.  Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Wood Types Grown in the Midwestern and Western United States , 2004 .

[88]  R. Philp Geochemical characteristics of oils derived predominantly from terrigenous source materials , 1994, Geological Society, London, Special Publications.

[89]  C. Cleal,et al.  Neuralethopteris foliage (Medullosales) in the Carboniferous of the Dobrudzha Coalfield, Bulgaria , 2010 .

[90]  W. Giger,et al.  Perylene in sediments from the Namibian Shelf , 1979 .

[91]  M. Monetti,et al.  Biogenic Polycyclic Aromatic Hydrocarbons in an Alaskan Arctic Lake Sediment , 1996 .

[92]  B. Eadie,et al.  Perylene: an indicator of alteration processes or precursor materials? , 1998 .

[93]  S. M. Barrett,et al.  Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments , 1999 .

[94]  C. Cleal,et al.  Pennsylvanian Vegetation and Climate in Tropical Variscan Euramerica , 2011 .

[95]  B. Simoneit,et al.  Tetracyclic terpanes enriched in Devonian cuticle humic coals , 1992 .

[96]  V. Wilde,et al.  Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—A review , 2001, The Botanical Review.

[97]  M. Élie,et al.  Artificial maturation of a high volatile bituminous coal from Asturias (NW Spain) in a confined pyrolysis system: Part I. Petrographic, geochemical and molecular studies , 2005 .

[98]  E. E. Bray,et al.  Distribution of n-paraffins as a clue to recognition of source beds , 1961 .