Diamond Field Effect Transistors With MoO3 Gate Dielectric

We report the first attempt of the diamond MOSFETs with MoO<sub>3</sub> dielectric directly deposited on H-diamond surface preserving atmospheric-adsorbate-induced 2DHG. The transistors with 4-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> gate show a transconductance of 29 mS/mm and an ON-resistance of <inline-formula> <tex-math notation="LaTeX">$75.25~\Omega \cdot \text {mm}$ </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">$\vert V_{\text {GS}} - V_{\text {TH}}\vert = 2.2$ </tex-math></inline-formula> V, respectively. The effective mobility is extracted to be 108 cm<sup>2</sup>/(Vs) from the relationship between the ON-resistance and <inline-formula> <tex-math notation="LaTeX">$\vert V_{\text {GS}}- V_{\text {TH}}\vert $ </tex-math></inline-formula>. The relatively high transconductance among the reported diamond MOSFETs with the same gate length could be attributed to the quite low ON-resistance. The evaluated high mobility indicates good interface characteristics between diamond and MoO<sub>3</sub>. However, the saturation drain current is limited at 33 mA/mm by the forward gate breakdown at <inline-formula> <tex-math notation="LaTeX">$\text{V}_{\text {GS}}$ </tex-math></inline-formula> of around −2 V.

[1]  A. Wee,et al.  Surface transfer doping of diamond by MoO3 : a combined spectroscopic and Hall measurement study , 2013 .

[2]  H. Kawarada,et al.  High-performance p-channel diamond MOSFETs with alumina gate insulator , 2007, 2007 IEEE International Electron Devices Meeting.

[3]  Hideki Yamamoto,et al.  Diamond Field-Effect Transistors with 1.3 A/mm Drain Current Density by Al$_{2}$O$_{3}$ Passivation Layer , 2012 .

[4]  R. Balmer,et al.  Diamond as an electronic material , 2008 .

[5]  Jiangwei Liu,et al.  Normally-off HfO2-gated diamond field effect transistors , 2013 .

[6]  Jiangwei Liu,et al.  Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices , 2012 .

[7]  J. D. del Alamo,et al.  A Diamond:H/MoO3 MOSFET , 2014, IEEE Electron Device Letters.

[8]  M. Kasu,et al.  2 W/mm output power density at 1 GHz for diamond FETs , 2005 .

[9]  Jiangwei Liu,et al.  Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric , 2014, Scientific Reports.

[10]  H. Kawarada,et al.  High performance diamond MISFETs using CaF2 gate insulator , 2003 .

[11]  M. Liao,et al.  Light intensity dependence of photocurrent gain in single-crystal diamond detectors , 2010 .

[12]  C. Verona,et al.  Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability , 2016 .

[13]  Masataka Imura,et al.  Diamond field effect transistors with a high-dielectric constant Ta2O5 as gate material , 2014 .

[14]  S. Y. Li,et al.  Diamond based field-effect transistors with SiNx and ZrO2 double dielectric layers , 2016 .

[15]  Jiangwei Liu,et al.  Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors , 2013 .

[16]  H. Kawarada,et al.  Fabrication of Metal–Oxide–Diamond Field-Effect Transistors with Submicron-Sized Gate Length on Boron-Doped (111) H-Terminated Surfaces Using Electron Beam Evaporated SiO2 and Al2O3 , 2011 .

[17]  Kenji Ueda,et al.  Gate interfacial layer in hydrogen-terminated diamond field-effect transistors , 2008 .

[18]  H. Kawarada,et al.  Over 20-GHz cutoff frequency submicrometer-gate diamond MISFETs , 2004, IEEE Electron Device Letters.

[19]  Jiangwei Liu,et al.  High-k ZrO2/Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors , 2016 .

[20]  D. Moran,et al.  Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz , 2012, IEEE Electron Device Letters.

[21]  Jiangwei Liu,et al.  Assembly of a high-dielectric constant thin TiOx layer directly on H-terminated semiconductor diamond , 2016 .