An iterative scheme for identifying the positive semi-definiteness of even-order real symmetric H-tensor

[1]  Baohua Huang,et al.  Krylov subspace methods to solve a class of tensor equations via the Einstein product , 2019, Numerical Linear Algebra with Applications.

[2]  Grigoriy Blekherman,et al.  Nonnegative Polynomials and Sums of Squares , 2010, 1010.3465.

[3]  Gang Wang,et al.  A fast algorithm for the spectral radii of weakly reducible nonnegative tensors , 2018, Numer. Linear Algebra Appl..

[4]  Changfeng Ma,et al.  An iterative algorithm to solve the generalized Sylvester tensor equations , 2018, Linear and Multilinear Algebra.

[5]  Yi-min Wei,et al.  ℋ-tensors and nonsingular ℋ-tensors , 2016 .

[6]  L. Qi,et al.  Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..

[7]  Jiawang Nie,et al.  Discriminants and nonnegative polynomials , 2010, J. Symb. Comput..

[8]  Liqun Qi,et al.  Column sufficient tensors and tensor complementarity problems , 2018 .

[9]  Changfeng Ma,et al.  Some criteria for identifying strong -tensors and its applications , 2019 .

[10]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[11]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[12]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[13]  A. Berman,et al.  Some properties of strong H-tensors and general H-tensors , 2015 .

[14]  Yiju Wang,et al.  An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms , 2016, J. Comput. Appl. Math..

[15]  Liqun Qi,et al.  M-Tensors and Some Applications , 2014, SIAM J. Matrix Anal. Appl..

[16]  Liqun Qi,et al.  Programmable criteria for strong ℋ$\mathcal {H}$-tensors , 2016, Numerical Algorithms.

[17]  Changfeng Ma,et al.  Iterative criteria for identifying strong H-tensors , 2019, J. Comput. Appl. Math..

[18]  N. Bose,et al.  General procedure for multivariable polynomial positivity test with control applications , 1976 .

[19]  Xueyong Wang,et al.  Solution structures of tensor complementarity problem , 2018, Frontiers of Mathematics in China.

[20]  Changfeng Ma,et al.  A modified CG algorithm for solving generalized coupled Sylvester tensor equations , 2020, Appl. Math. Comput..

[21]  Yan Zhu,et al.  Criterions for the positive definiteness of real supersymmetric tensors , 2014, J. Comput. Appl. Math..

[22]  Liqun Qi,et al.  A practical method for computing the largest M‐eigenvalue of a fourth‐order partially symmetric tensor , 2009, Numer. Linear Algebra Appl..

[23]  Yiju Wang,et al.  Criteria for strong H-tensors , 2016 .

[24]  Changfeng Ma,et al.  Global least squares methods based on tensor form to solve a class of generalized Sylvester tensor equations , 2020, Appl. Math. Comput..

[25]  L. Qi,et al.  M-tensors and nonsingular M-tensors , 2013, 1307.7333.

[26]  Haibin Chen,et al.  On computing minimal H-eigenvalue of sign-structured tensors , 2017, Frontiers of Mathematics in China.

[27]  Guoyin Li,et al.  A semidefinite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test , 2018, Numer. Linear Algebra Appl..

[28]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[29]  Changfeng Ma,et al.  The tensor splitting methods for solving tensor absolute value equation , 2020, Comput. Appl. Math..

[30]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..