Analytic next-to-nearest-neighbor X X models with perfect state transfer and fractional revival

Certain nonuniformly coupled spin chains can exhibit perfect transfer of quantum states from end to end. Motivated by recent experimental implementations in evanescently coupled waveguide arrays, we extend the simplest such chain to next-to-nearest-neighbor couplings. It is shown analytically that perfect state transfer can be maintained under the extension and that end-to-end entanglement generation (fractional revival) can occur.

[1]  Roberto Osellame,et al.  Experimental perfect state transfer of an entangled photonic qubit , 2016, Nature Communications.

[2]  Luc Vinet,et al.  Quantum spin chains with fractional revival , 2015, 1507.05919.

[3]  L. Vinet,et al.  Exact Fractional Revival in Spin Chains , 2015, 1506.08434.

[4]  Leonardo Banchi,et al.  Perfect wave-packet splitting and reconstruction in a one-dimensional lattice , 2015, 1502.03061.

[5]  T. S. Mahesh,et al.  Efficient simulation of unitary operators by combining two numerical algorithms: An NMR simulation of the mirror-inversion propagator of an XY spin chain , 2014 .

[6]  I. Jex,et al.  Quantum State Transfer and Network Engineering , 2013 .

[7]  Stefan Nolte,et al.  Coherent quantum transport in photonic lattices , 2012, 1207.6080.

[8]  G. M. Nikolopoulos,et al.  Faithful communication Hamiltonian in photonic lattices. , 2012, Optics letters.

[9]  N. Efremidis,et al.  A note on perfect revivals in finite waveguide arrays , 2012 .

[10]  I. Jex,et al.  Analysis and minimization of bending losses in discrete quantum networks , 2012, 1206.2256.

[11]  L. Vinet,et al.  Birth and death processes and quantum spin chains , 2012, 1205.4689.

[12]  Luc Vinet,et al.  Almost perfect state transfer in quantum spin chains , 2012, 1205.4680.

[13]  Simone Severini,et al.  Number-theoretic nature of communication in quantum spin systems. , 2012, Physical review letters.

[14]  Luc Vinet,et al.  How to construct spin chains with perfect state transfer , 2011, 1110.6474.

[15]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[16]  Alastair Kay,et al.  Perfect, Efficent, State Transfer and its Application as a Constructive Tool , 2009, 0903.4274.

[17]  Li Dai,et al.  Engineering quantum cloning through maximal entanglement between boundary qubits in an open spin chain , 2010 .

[18]  S. Longhi Quantum‐optical analogies using photonic structures , 2009 .

[19]  F. Grünbaum Block Tridiagonal Matrices and a Beefed-up Version of the Ehrenfest Urn Model , 2009 .

[20]  Yaron Silberberg,et al.  Discrete Solitons in Optics , 2008 .

[21]  G. M. Nikolopoulos,et al.  Perfect state transfer in networks of arbitrary topology and coupling configuration , 2007, quant-ph/0702016.

[22]  C. P. Sun,et al.  Fractional revivals of the quantum state in a tight-binding chain , 2007 .

[23]  A. Kay Perfect state transfer : Beyond nearest-neighbor couplings , 2005, quant-ph/0509065.

[24]  N. Datta,et al.  Mirror inversion of quantum states in linear registers. , 2004, Physical review letters.

[25]  R. Robinett Quantum wave packet revivals , 2004, quant-ph/0401031.

[26]  N. Datta,et al.  Perfect state transfer in quantum spin networks. , 2003, Physical review letters.

[27]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[28]  S. Bose Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.

[29]  M. Anshelevich,et al.  Introduction to orthogonal polynomials , 2003 .

[30]  D. Christodoulides,et al.  Discrete solitons in nonlinear zigzag optical waveguide arrays with tailored diffraction properties. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[32]  T. Koornwinder,et al.  Krawtchouk polynomials, a unification of two different group theoretic interpretations : (preprint) , 1982 .