Impaired regulation of cardiac function in sepsis, SIRS, and MODS.

In sepsis, systemic inflammatory response syndrome (SIRS), and multiorgan dysfunction syndrome (MODS), a severe prognostically relevant cardiac autonomic dysfunction exists, as manifested by a strong attenuation of sympathetically and vagally mediated heart rate variability (HRV). The mechanisms underlying this attenuation are not limited to the nervous system. They also include alterations of the cardiac pacemaker cells on a cellular level. As shown in human atrial cardiomyocytes, endotoxin interacts with cardiac hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels, which mediate the pacemaker current If and play an important role in transmitting sympathetic and vagal signals on heart rate and HRV. Moreover, endotoxin sensitizes cardiac HCN channels to sympathetic signals. These findings identify endotoxin as a pertinent modulator of the autonomic nervous regulation of heart function. In MODS, the vagal pathway of the autonomic nervous system is particularly compromised, leading to an attenuation of the cholinergic antiinflammatory reflex. An amelioration of the blunted vagal activity appears to be a promising novel therapeutic target to achieve a suppression of the inflammatory state and thereby an improvement of prognosis in MODS patients. Preliminary data revealed therapeutic benefits (increased survival rates and improvements of the depressed vagal activity) of the administration of statins, beta-blockers, and angiotensin-converting enzyme inhibitors in patients with MODS.

[1]  Lie Gao,et al.  Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. , 2006, Cardiovascular research.

[2]  K. Swedberg,et al.  Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). , 1988, The American journal of cardiology.

[3]  C. Ferrario,et al.  Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. , 2006, The American journal of cardiology.

[4]  C. Libert Inflammation: A nervous connection , 2003, Nature.

[5]  J. Shelhamer,et al.  Profound but reversible myocardial depression in patients with septic shock. , 1984, Annals of internal medicine.

[6]  U. Muller-Werdan,et al.  Septic cardiomyopathy - A not yet discovered cardiomyopathy? , 2006, Experimental and clinical cardiology.

[7]  W. Sibbald,et al.  An assessment of myocardial function in human sepsis utilizing ECG gated cardiac scintigraphy. , 1981, Chest.

[8]  Salim Yusuf,et al.  Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. , 1991, The New England journal of medicine.

[9]  Michael L. Levy,et al.  Vagus Nerve Stimulation , 2008, Proceedings of the IEEE.

[10]  T G Buchman,et al.  Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. , 1996, Critical care medicine.

[11]  Rolf Rossaint,et al.  Epidemiology of sepsis in Germany: results from a national prospective multicenter study , 2007, Intensive Care Medicine.

[12]  D. Andreini,et al.  Carvedilol reduces exercise‐induced hyperventilation: A benefit in normoxia and a problem with hypoxia , 2006, European journal of heart failure.

[13]  K. Tracey,et al.  Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis , 2004, Nature Medicine.

[14]  B. Mravec The role of the vagus nerve in stroke , 2010, Autonomic Neuroscience.

[15]  K. Werdan,et al.  Eingeschränkte Herzfrequenzvariabilität bei Patienten mit septischem und nicht-septischem Multiorgan-Dysfunktions-Syndrom , 1999 .

[16]  G. Parati,et al.  Beta-adrenergic blocking treatment and 24-hour baroreflex sensitivity in essential hypertensive patients. , 1994, Hypertension.

[17]  K. Werdan,et al.  Septischer Kreislaufschock und septische Kardiomyopathie , 2009, Der Internist.

[18]  S. Lavine,et al.  Left ventricular diastolic function in sepsis. , 1990, Critical care medicine.

[19]  K. Tracey Physiology and immunology of the cholinergic antiinflammatory pathway. , 2007, The Journal of clinical investigation.

[20]  D. Hoyer,et al.  Autonomic dysfunction predicts both 1- and 2-month mortality in middle-aged patients with multiple organ dysfunction syndrome* , 2008, Critical care medicine.

[21]  C. Sprung,et al.  Sepsis in European intensive care units: Results of the SOAP study* , 2006, Critical care medicine.

[22]  K. Werdan,et al.  The Consequences of Cardiac Autonomic Dysfunction in Multiple Organ Dysfunction Syndrome , 2008 .

[23]  Kevin J. Tracey,et al.  The inflammatory reflex , 2002, Nature.

[24]  Jun Ren,et al.  Sepsis-Induced Depressed Contractile Function of Isolated Ventricular Myocytes Is Due to Altered Calcium Transient Properties , 2002, Shock.

[25]  M. Biel,et al.  A family of hyperpolarization-activated mammalian cation channels , 1998, Nature.

[26]  K. Jahnz-Różyk,et al.  Epidemiology of sepsis , 2008 .

[27]  Yasutaka Kurata,et al.  Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. , 2002, American journal of physiology. Heart and circulatory physiology.

[28]  F. Ognibene,et al.  Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. , 1990, Annals of internal medicine.

[29]  K. Werdan,et al.  Cytokines and the Heart: Molecular Mechanisms of Septic Cardiomyopathy , 1996 .

[30]  Annalisa Bucchi,et al.  Physiology and pharmacology of the cardiac pacemaker ("funny") current. , 2005, Pharmacology & therapeutics.

[31]  J. Saul,et al.  Lipid Lowering by Pravastatin Increases Parasympathetic Modulation of Heart Rate: G&agr;i2, a Possible Molecular Marker for Parasympathetic Responsiveness , 2003, Circulation.

[32]  B. Takase Role of Heart Rate Variability in Non‐Invasive Electrophysiology: Prognostic Markers of Cardiovascular Disease , 2010 .

[33]  M. Biel,et al.  Structure and Function of Cardiac Pacemaker Channels , 1999, Cellular Physiology and Biochemistry.

[34]  Mark Jones,et al.  Statin therapy is associated with fewer deaths in patients with bacteraemia , 2005, Intensive Care Medicine.

[35]  Dirk Hoyer,et al.  Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups* , 2005, Critical care medicine.

[36]  K. Werdan,et al.  Decreased beating rate variability of spontaneously contracting cardiomyocytes after co-incubation with endotoxin , 2007, Journal of endotoxin research.

[37]  A. Walli,et al.  Spielen Statine eine Rolle als adjuvante Therapie bei Entzündung? / Do statins play a role as an adjuvant therapy in inflammation? , 2010 .

[38]  H. Routledge,et al.  Heart rate variability – a therapeutic target? , 2002, Journal of clinical pharmacy and therapeutics.

[39]  J E Parrillo,et al.  The cardiovascular pathophysiology of sepsis. , 1989, Annual review of medicine.

[40]  P. Fraunberger,et al.  Do statins play a role as an adjuvant therapy in inflammation? 1 , 2010 .

[41]  Martin Biel,et al.  Cardiac HCN channels: structure, function, and modulation. , 2002, Trends in cardiovascular medicine.

[42]  W. Seeger,et al.  Simvastatin Inhibits Inflammatory Properties of Staphylococcus aureus &agr;-Toxin , 2002, Circulation.

[43]  D. Hoyer,et al.  Impaired chemoreflex sensitivity in adult patients with multiple organ dysfunction syndrome—the potential role of disease severity , 2004, Intensive Care Medicine.

[44]  K. Tracey,et al.  Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin , 2000, Nature.

[45]  V. Novack,et al.  Prior Statin Therapy Is Associated With a Decreased Rate of Severe Sepsis , 2004, Circulation.

[46]  Christopher J Czura,et al.  Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Visser,et al.  Left ventricular systolic and diastolic function in septic shock , 1997, Intensive Care Medicine.

[48]  K. Tracey,et al.  Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation , 2005, The Journal of experimental medicine.

[49]  M. Merx,et al.  Sepsis and the heart. , 2007, Circulation.

[50]  H. Mächler,et al.  Endotoxin impairs the human pacemaker current If , 2007, Shock.

[51]  T G Buchman,et al.  Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. , 1996, Critical care medicine.

[52]  Kevin J. Tracey,et al.  Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation , 2002, Nature.

[53]  B. Munt,et al.  Diastolic filling in human severe sepsis: an echocardiographic study. , 1998, Critical care medicine.

[54]  C. Weber,et al.  HMG-CoA Reductase Inhibitor Simvastatin Profoundly Improves Survival in a Murine Model of Sepsis , 2004, Circulation.

[55]  Karl Werdan,et al.  Association of statin therapy and increased survival in patients with multiple organ dysfunction syndrome , 2006, Intensive Care Medicine.