Optimization via multimodel simulation

Increasing computational power and the availability of 3D printers provide new tools for the combination of modeling and experimentation. Several simulation tools can be run independently and in parallel, e.g., long running computational fluid dynamics simulations can be accompanied by experiments with 3D printers. Furthermore, results from analytical and data-driven models can be incorporated. However, there are fundamental differences between these modeling approaches: some models, e.g., analytical models, use domain knowledge, whereas data-driven models do not require any information about the underlying processes. At the same time, data-driven models require input and output data, but analytical models do not. The optimization via multimodel simulation (OMMS) approach, which is able to combine results from these different models, is introduced in this paper. We believe that OMMS improves the robustness of the optimization, accelerates the optimization-via-simulation process, and provides a unified approach. Using cyclonic dust separators as a real-world simulation problem, the feasibility of this approach is demonstrated and a proof-of-concept is presented. Cyclones are popular devices used to filter dust from the emitted flue gasses. They are applied as pre-filters in many industrial processes including energy production and grain processing facilities. Pros and cons of this multimodel optimization approach are discussed and experiences from experiments are presented.

[1]  Mohammad Hassan Khalid,et al.  Computational intelligence modeling of granule size distribution for oscillating milling , 2016 .

[2]  Tony L. Schmitz,et al.  Experimental flapping wing optimization and uncertainty quantification using limited samples , 2015 .

[3]  R. Tibshirani,et al.  Combining Estimates in Regression and Classification , 1996 .

[4]  Thomas J. Overcamp,et al.  A simple method for estimating cyclone efficiency , 1998 .

[5]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[6]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[7]  Raphael T. Haftka,et al.  Requirements for papers focusing on new or improved global optimization algorithms , 2016 .

[8]  Alex C. Hoffmann,et al.  Gas Cyclones and Swirl Tubes , 2002 .

[9]  Mark Brazier,et al.  An approach to the construction and usage of simulation modeling in the shipbuilding industry , 1991, 1991 Winter Simulation Conference Proceedings..

[10]  Friedrich Löffler,et al.  Bewegung und Abscheidung der Partikeln im Zyklon , 1984 .

[11]  Thomas Bartz-Beielstein,et al.  Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[12]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[13]  Salvador Pintos,et al.  An Optimization Methodology of Alkaline-Surfactant-Polymer Flooding Processes Using Field Scale Numerical Simulation and Multiple Surrogates , 2005 .

[14]  Christine A. Shoemaker,et al.  Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems , 2014, J. Glob. Optim..

[15]  Jack P. C. Kleijnen Design and Analysis of Simulation Experiments , 2007 .

[16]  R. Haftka,et al.  Ensemble of surrogates , 2007 .

[17]  Bernard P. Zeigler,et al.  A multimodel methodology for qualitative model engineering , 1992, TOMC.

[18]  Thomas Bartz-Beielstein,et al.  Model-based methods for continuous and discrete global optimization , 2017, Appl. Soft Comput..

[19]  Larry Bull,et al.  Toward the Coevolution of Novel Vertical-Axis Wind Turbines , 2013, IEEE Transactions on Evolutionary Computation.

[20]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[21]  Yuhong Yang REGRESSION WITH MULTIPLE CANDIDATE MODELS: SELECTING OR MIXING? , 1999 .

[22]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[23]  Jack P. C. Kleijnen,et al.  Simulation-optimization via Kriging and bootstrapping: a survey , 2014, J. Simulation.

[24]  Bernard P. Zeigler,et al.  Multifaceted, multiparadigm modeling perspectives: tools for the 90's , 1986, WSC '86.

[25]  Arthur P. Dempster,et al.  A Generalization of Bayesian Inference , 1968, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[26]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[27]  Thomas Bartz-Beielstein,et al.  Tuning multi-objective optimization algorithms for cyclone dust separators , 2014, GECCO.

[28]  L. Breiman Stacked Regressions , 1996, Machine Learning.

[29]  Edgar Muschelknautz,et al.  Die Berechnung von Zyklonabscheidern für Gase , 1972 .

[30]  Michael C. Fu,et al.  Optimization via simulation: A review , 1994, Ann. Oper. Res..

[31]  Rich Caruana,et al.  Model compression , 2006, KDD '06.

[32]  Dimitri N. Mavris,et al.  Heuristics for the regression of stochastic simulations , 2013, J. Simulation.

[33]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[34]  Chris Lacor,et al.  CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms , 2013 .

[35]  Anirban Chaudhuri,et al.  Parallel surrogate-assisted global optimization with expensive functions – a survey , 2016 .

[36]  J. Derksen,et al.  An experimental and numerical study of turbulent swirling flow in gas cyclones , 1999 .

[37]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[38]  Chris Lacor,et al.  Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations , 2010 .

[39]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.