hp-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to Lambda, h, and p
暂无分享,去创建一个
[1] Boris N. Khoromskij,et al. Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..
[2] Serge Levendorskiĭ. Asymptotic Distribution of Eigenvalues of Differential Operators , 1990 .
[3] A. Knyazev. Sharp a priori error estimates of the Rayleigh-Ritz method without assumptions of fixed sign or compactness , 1985 .
[4] F. Brownell. Extended Asymptotic Eigenvalue Distributions for Bounded Domains in n-Space , 1957 .
[5] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[6] Lehel Banjai,et al. FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study , 2008 .
[7] A. Huber. Methoden der mathematischen Physik, 2. Bd , 1939 .
[8] Y. Saad. On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .
[9] Aihui Zhou,et al. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..
[10] Rolf Rannacher,et al. A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..
[11] F. Brownell. An extension of Weyl's asymptotic law for eigenvalues. , 1955 .
[12] E. Ovtchinnikov. Cluster robust error estimates for the Rayleigh–Ritz approximation I: Estimates for invariant subspaces , 2006 .
[13] Andrew Knyazev,et al. New estimates for Ritz vectors , 1997, Math. Comput..
[14] E. D'yakonov. Optimization in Solving Elliptic Problems , 1995 .
[15] F. Chatelin. Spectral approximation of linear operators , 2011 .
[16] Jens Markus Melenk,et al. hp-Finite Element Methods for Singular Perturbations , 2002 .
[17] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[18] Jens Markus Melenk,et al. Convergence Analysis for Finite Element Discretizations of the Helmholtz Equation. Part I: the Full Space Problem , 2008 .
[19] Stefan A. Sauter,et al. Elliptic Differential Equations , 2010 .
[20] Stefano Giani,et al. A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..
[21] Carsten Carstensen,et al. An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.
[22] Jens Markus Melenk,et al. Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..
[23] Andrew V. Knyazev,et al. New A Priori FEM Error Estimates for Eigenvalues , 2006, SIAM J. Numer. Anal..
[24] R. Courant,et al. Methoden der mathematischen Physik , .
[25] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..