hp-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to Lambda, h, and p

Convergence rates for finite element discretizations of elliptic eigenvalue problems in the literature usually are of the following form: If the mesh width $h$ is fine enough, then the eigenvalues, resp., eigenfunctions, converge at some well-defined rate. In this paper, we will determine the maximal mesh width $h_{0}$—more precisely the minimal dimension of a finite element space—so that the asymptotic convergence estimates hold for $h\leq h_{0}$. This mesh width will depend on the size and spacing of the exact eigenvalues, the spatial dimension, and the local polynomial degree of the finite element space. For example, in the one-dimensional case, the condition $\lambda^{3/4}h_{0}\lesssim1$ is sufficient for piecewise linear finite elements to compute an eigenvalue $\lambda$ with optimal convergence rates as $h_{0}\geq h\rightarrow0$. It will turn out that the condition for eigenfunctions is slightly more restrictive. Furthermore, we will analyze the dependence of the ratio of the errors of the Galerkin approximation and of the best approximation of an eigenfunction on $\lambda$ and $h$. In this paper, the error estimates for the eigenvalue/-function are limited to the selfadjoint case. However, the regularity theory and approximation property cover also the nonselfadjoint case and, hence, pave the way towards the error analysis of nonselfadjoint eigenvalue/-function problems.

[1]  Boris N. Khoromskij,et al.  Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..

[2]  Serge Levendorskiĭ Asymptotic Distribution of Eigenvalues of Differential Operators , 1990 .

[3]  A. Knyazev Sharp a priori error estimates of the Rayleigh-Ritz method without assumptions of fixed sign or compactness , 1985 .

[4]  F. Brownell Extended Asymptotic Eigenvalue Distributions for Bounded Domains in n-Space , 1957 .

[5]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[6]  Lehel Banjai,et al.  FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study , 2008 .

[7]  A. Huber Methoden der mathematischen Physik, 2. Bd , 1939 .

[8]  Y. Saad On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .

[9]  Aihui Zhou,et al.  Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..

[10]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[11]  F. Brownell An extension of Weyl's asymptotic law for eigenvalues. , 1955 .

[12]  E. Ovtchinnikov Cluster robust error estimates for the Rayleigh–Ritz approximation I: Estimates for invariant subspaces , 2006 .

[13]  Andrew Knyazev,et al.  New estimates for Ritz vectors , 1997, Math. Comput..

[14]  E. D'yakonov Optimization in Solving Elliptic Problems , 1995 .

[15]  F. Chatelin Spectral approximation of linear operators , 2011 .

[16]  Jens Markus Melenk,et al.  hp-Finite Element Methods for Singular Perturbations , 2002 .

[17]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[18]  Jens Markus Melenk,et al.  Convergence Analysis for Finite Element Discretizations of the Helmholtz Equation. Part I: the Full Space Problem , 2008 .

[19]  Stefan A. Sauter,et al.  Elliptic Differential Equations , 2010 .

[20]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[21]  Carsten Carstensen,et al.  An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.

[22]  Jens Markus Melenk,et al.  Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..

[23]  Andrew V. Knyazev,et al.  New A Priori FEM Error Estimates for Eigenvalues , 2006, SIAM J. Numer. Anal..

[24]  R. Courant,et al.  Methoden der mathematischen Physik , .

[25]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..